Skip to main content
Log in

Massive diurnally modulated photoreceptor membrane turnover in crab light and dark adaptation

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

  1. 1.

    Effects of light and dark adaptation on the photoreceptor membranes of the rock crabGrapsus have been quantitatively studied using light and electron microscopy to document changes in rhabdom size and their fine structural basis. Some comparative data were also obtained for the ghost crabOcypode. Animals in the laboratory were maintained on a daily light (L)-dark (D)cycle 12L∶12D. Periods of adaptation ranged from 3–28 h (Table 1) and light adaptation was effected at one moderate intensity equal to the light period in the daily sequence.

  2. 2.

    Massive rapid reversible changes in rhabdom size (Fig. 1) comprising mainly diameter modulation (Figs. 2, 3) and some alteration in length, normally resulted in maximum increases in receptor organelle volume of about 20× between a thinner, shorter fully light adapted condition (2×290 μm) to the fully dark adapted state (7.9× 336 μm).

  3. 3.

    Rhabdom growth during dark adaptation (Table 2) was due mainly (Fig. 8) to microvillus elongation (+154%) as well as substantial increase (+117%) in the number of microvilli present in cross sections (Figs. 2, 3, 10); microvillus diameter (Figs. 4, 5, 9) also increased (+14%) but accounts for only a minor part of the overall change commensurate with observed differences in rhabdom length (+16%). Calculation shows that from fully light adapted to fully dark adapted state the area of photoreceptor membrane increased nearly 20× in a few hours.

  4. 4.

    Although duration of adaptation affected its amplitude, six hours of either light or darkness evoked the maximum changes documented; shorter and longer periods had less effect (Figs. 6, 7).

  5. 5.

    Time of day had a strong periodic influence on the amplitude of membrane adaptation produced by a given exposure to dark or light. Thus maximum dark adaptation occurred with 6 h of darkness terminating at midnight and maximum light adaptation with 6 h of light ending at noon of the diurnal light cycle (Fig. 11).

  6. 6.

    Direct effects of light and dark on synthesis and degradation of photoreceptor membrane must therefore be superimposed on indirect or direct cyclic neuroendocrine control presumably coupled to an entrained circadian oscillator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ali, M. (ed.): Vision in fishes. NATO Advanced Study Institute Series: Life Sciences, Vol. 1., pp. 836. New York: Plenum Publishing Corporation 1975

    Google Scholar 

  • Anderson, D.H., Fisher, S.K.: The photoreceptors of diurnal squirrels: outer segment structure, disc shedding and protein renewal. J. Ultrastruct. Res.55, 119–141 (1976)

    Google Scholar 

  • Anderson, D.H., Fisher, S.K., Steinberg, R.H.: Mammalian cones — disc shedding, phagocytosis, and renewal. Invest. Ophthalmol.17, 117–133 (1978)

    Google Scholar 

  • Arechiga, H.: Circadian rhythmicity in the nervous system of crustaceans. Fed. Proc.36, 2036–2041 (1977)

    Google Scholar 

  • Axelrod, J.: The pineal gland: a neurochemical transducer. Science184, 1341–1348 (1974)

    Google Scholar 

  • Bagnara, J.T.: Pineal regulation of the body lightening reaction in amphibian larvae. Science132, 1481–1483 (1960)

    Google Scholar 

  • Barlow, R.B., Jr., Bolonowski, S.J., Jr., Brachman, M.L.: Efferent optic nerve fibers mediate circadian rhythms in theLimulus eye. Science197, 86–89 (1977)

    Google Scholar 

  • Barnes, S.N., Goldsmith, T.H.: Dark adaptation, sensitivity and rhodopsin level in the eye of the lobster,Homarus. J. Comp. Physiol.120, 143–159 (1977)

    Google Scholar 

  • Basinger, S., Hoffman, R., Mathes, M.: Photoreceptor shedding is initiated by light in the frog retina. Science194, 1074–1076 (1976)

    Google Scholar 

  • Bedini, C., Ferrero, E., Lanfranchi, A.: Fine structural changes induced by circadian light-dark cycles in photoreceptors of Dalyelliidae (Turbellaria: Rhabdocoela). J. Ultrastruct. Res.58, 66–77 (1977)

    Google Scholar 

  • Binkley, S.: Pineal gland biorhythms:N-acetyltransferase in chickens and rats. Fed. Proc.35, 2347–2352 (1976)

    Google Scholar 

  • Birch, D., Jacobs, G.H.: Effects of constant illumination on vision in the albino rat. Physiol. Behav.19, 255–259 (1977)

    Google Scholar 

  • Blest, A.D.: The rapid synthesis and destruction of photoreceptor membrane by a dinopid spider; a daily cycle. Proc. R, Soc. London (Biol.)200, 463–483 (1978)

    Google Scholar 

  • Blest, A.D., Day, W.A.: The rhabdomere organization of some nocturnal Pisaurid spiders in light and darkness. Phil. Trans. R. Soc. London (Biol.)283, 1–23 (1978)

    Google Scholar 

  • Blest, A.D., Powell, K., Kao, L.: Photoreceptor membrane breakdown in the spiderDinopis: GERL differentiation in the receptors. Cell Tiss. Res.195, 277–297 (1978)

    Google Scholar 

  • Bok, D., Hall, M.O., O'Brien, P.: The biosynthesis of rhodopsin as studied by membrane renewal in rod outer segments. In: International cell biology. Brinkley, B.R., Porter, K.R. (eds.), pp. 608–617. New York: Rockefeller University Press 1977

    Google Scholar 

  • Brady, J.: The physiology of insect circadian rhythms. Adv. Insect Physiol.10, 1–115 (1974)

    Google Scholar 

  • Brammer, J.D., Clarin, B.: Changes in volume of the rhabdom in the compound eye ofAedes aegypti L. J. Exp. Zool.195, 33–40 (1976)

    Google Scholar 

  • Bridges, C.D.B., Hollyfield, J.G., Besharse, J.C., Rayborn, M.E.: Visual pigment loss after light induced shedding of rod outer segments. Exp. Eye Res.23, 637–641 (1976)

    Google Scholar 

  • Brodie, A.E., Bownds, D.: Biochemical correlates of adaptation processes in isolated frog photoreceptor membranes. J. Gen. Physiol.68, 1–11 (1976)

    Google Scholar 

  • Brown, F.A., Jr.: Physiological rhythms. In: The physiology of Crustacea, Vol. II. Waterman, T.H. (ed.), pp. 401–430. New York: Academic Press 1961

    Google Scholar 

  • Burnside, B.: Thin (actin) and thick (myosinlike) filaments in cone contraction in the teleost retina. J. Cell Biol.78, 227–246 (1978)

    Google Scholar 

  • Currie, J.R., Hollyfield, J.G., Rayborn, M.E.: Rod outer segment elongation in constant light: darkness is required for normal shedding. Vision Res.18, 995–1003 (1978)

    Google Scholar 

  • Dartnall, H.J.A.: Photosensitivity. In: Handbook of sensory physiology, Vol. VII/1. Dartnall, H.J.A. (ed.), pp. 122–145. Berlin, Heidelberg, New York: Springer 1972

    Google Scholar 

  • Debaisieux, P.: Les yeux des Crustacés. Cellule50, 9–122 (1944)

    Google Scholar 

  • Dembowski, I.: Über den Bau der Augen vonOcypode ceratophthalma Fabr. Zool. Jahrb. Abt. Anat. Ontog. Tiere36, 513–524 (1913)

    Google Scholar 

  • Dodt, E.: The parietal eye (pineal and parietal organs) of lower vertebrates. In: Handbook of sensory physiology, Vol. VII/3B. Jung, R. (ed.), pp. 113–140. Berlin, Heidelberg, New York: Springer 1973

    Google Scholar 

  • Eakin, R.M.: The third eye. pp. 157. Berkeley: University of California Press 1973

    Google Scholar 

  • Eguchi, E.: Rhabdom structure and receptor potentials in single crayfish retinular cells. J. Cell. Comp. Physiol.66, 411–429 (1965)

    Google Scholar 

  • Eguchi, E., Waterman, T.H.: Fine structure patterns in crustacean rhabdoms. In: The functional organization of the compound eye. Bernhard, C.G. (ed.), pp. 105–124. Oxford: Pergamon Press 1966

    Google Scholar 

  • Eguchi, E., Waterman, T.H.: Changes in retinal fine structure induced in the crabLibinia by light and dark adaptation. Z. Zellforsch.79, 209–229 (1967)

    Google Scholar 

  • Eguchi, E., Waterman, T.H.: Cellular basis for polarized light perception in the spider crab,Libinia. Z. Zellforsch.84, 87–101 (1968)

    Google Scholar 

  • Eguchi, E., Waterman, T.H.: Orthogonal microvillus pattern in the eighth rhabdomere of the rock crabGrapsus. Z. Zellforsch.137, 145–157 (1973)

    Google Scholar 

  • Eguchi, E., Waterman, T.H.: Freeze-etch and histochemical evidence for cycling in crayfish photoreceptor membranes. Cell Tiss. Res.169, 419–434 (1976)

    Google Scholar 

  • Eguchi, E., Waterman, T.H.: Longterm dark induced fine structural changes in crayfish photoreceptor membrane. J. Comp. Physiol.131, 191–203 (1979)

    Google Scholar 

  • Eguchi, E., Waterman, T.H., Akiyama, J.: Localization of the violet and yellow receptor cells in the crayfish retinula. J. Gen. Physiol.62, 355–374 (1973)

    Google Scholar 

  • Elliott, J.A.: Circadian rhythms and photoperiodic time measurement in mammals. Fed. Proc.35, 2339–2346 (1976)

    Google Scholar 

  • Goldsmith, T.H.: The effects of screening pigments on the spectral sensitivity of some Crustacea with scotopic (superposition) eyes. Vision Res.18, 475–482 (1978)

    Google Scholar 

  • Hamasaki, D.I., Eder, D.J.: Adaptive radiation of the pineal system. In: Handbook of sensory physiology, Vol. VII/5. Crescitelli, F. (ed.), pp. 497–548. Berlin, Heidelberg, New York: Springer 1977

    Google Scholar 

  • Hollyfield, J.G., Basinger. S.F.: Cyclic metabolism of photoreceptor cells. Invest. Ophthalmol.17, 87–89 (1978a)

    Google Scholar 

  • Hollyfield, J.G., Basinger, S.F.: Photoreceptor shedding can be initiated within the eye. Nature274, 794–796 (1978b)

    Google Scholar 

  • Itaya, S.K.: Rhabdom changes in the shrimpPalaemonetes. Cell Tiss. Res.166, 256–273 (1976)

    Google Scholar 

  • Jacklet, W.: Neuronal circadian rhythm: phase shifting by a protein synthesis inhibitor. Science198, 69–70 (1977)

    Google Scholar 

  • Karnovsky, M.J.: A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy. J. Cell Biol.27, 137A-138A (1965)

    Google Scholar 

  • Kleinholz, L.H.: Eye-stalk hormone and the movement of the distal retinal pigment inPalaemonetes. Proc. Natl. Acad. Sci. U.S.A.20, 659–661 (1934)

    Google Scholar 

  • Kleinholz, L.H.: Pigmentary effectors. In: The physiology of Crustacea, Vol. II. Waterman, T.H. (ed.), pp. 133–169. New York: Academic Press 1961

    Google Scholar 

  • Kong, K.-L., Goldsmith, T.H.: Photosensitivity of retinular cells in white-eyed crayfish (Procambarus clarkii). J. Comp. Physiol.122, 273–288 (1977)

    Google Scholar 

  • Kunze, P.: Histologische Untersuchungen zum Bau des Auges vonOcypode cursor (Brachyura). Z. Zellforsch.82, 466–478 (1967)

    Google Scholar 

  • Kunze, P., Boschek, C.B.: Elektronenmikroskopische Untersuchung zur Form der achten Retinulazelle beiOcypode. Z. Naturforsch.23b, 568b-569b (1968)

    Google Scholar 

  • LaVail, M.M.: Rod outer segment disk shedding in rat retina; relationship to cyclic lighting. Science194, 1071–1073 (1976a)

    Google Scholar 

  • LaVail, M.M.: Rod outer segment disc shedding in relation to cyclic lighting. Exp. Eye Res.23, 277–280 (1976b)

    Google Scholar 

  • Lipton, S.A., Ostroy, S.E., Dowling, J.E.: Electrical and adaptive properties of rod photoreceptors inBufo marinus. I. Effects of altered extracellular Ca2+ levels. J. Gen. Physiol.70, 747–771 (1977a)

    Google Scholar 

  • Lipton, S.A., Rasmussen, H., Dowling, J.E.: Electrical and adaptive properties of rod photoreceptors inBufo marinus. II. Effects of cyclic nucleotides and prostaglandins. J. Gen. Physiol.70, 771–791 (1977b)

    Google Scholar 

  • Loew, E.R.: Light, and photoreceptor degeneration in the Norway lobster,Nephrops norvegicus (L.) Proc. R. Soc. London (Biol.)193, 31–14 (1976)

    Google Scholar 

  • Ludolph, C., Pagnanelli, D., Mote, M.I.: Neural control of migration of proximal screening pigment by retinular cells of the swimming crabCallinectes sapidus. Biol. Bull.145, 159–170 (1973)

    Google Scholar 

  • Mansfield, R.J.W.: Visual adaptation: retinal transduction, brightness and sensitivity. Vision Res.16, 679–690 (1976)

    Google Scholar 

  • Meyer, D.B.: The avian eye and its adaptations. In: Handbook of sensory physiology, Vol. VII/5. Crescitelli, F. (ed.), pp. 549–611. Berlin, Heidelberg, New York: Springer 1977

    Google Scholar 

  • Meyer-Rochow, V.B., Horridge, G.A.: The eye ofAnoplognathus (Coleoptera, Scarabaeidae). Proc. R. Soc. London (Biol.)188, 1–30 (1975)

    Google Scholar 

  • Miller, W.H.: Ocular optical filtering. In: Handbook of sensory physiology, Vol. VII/ 6A. Autrum, H. (ed.). Berlin, Heidelberg, New York: Springer (in press) 1979

    Google Scholar 

  • Nemanic, P.: Fine structure of the compound eye ofPorcellio scaber in light and dark adaptation. Tissue Cell7, 453–468 (1975)

    Google Scholar 

  • O'Day, W.T., Young, R.W.: Rhythmic daily shedding of outer-segment membranes by visual cells in the goldfish. J. Cell Biol.76, 593–604 (1978)

    Google Scholar 

  • Olivo, R.F., Larsen, M.E.: Brief exposure to light initiates screening pigment migration in retinula cells of the crayfishProcambarus. J. Comp. Physiol.125, 91–96 (1978)

    Google Scholar 

  • Page, T.L., Larimer, J.L.: Neural control of circadian rhythmicity in crayfish. 2. ERG amplitude rhythm. J. Comp. Physiol.97, 81–96 (1975)

    Google Scholar 

  • Page, T.L., Larimer, J.L.: Extraretinal photoreception in entrain-ment of crustacean circadian rhythm. Photochem. Photobiol.23, 245–251 (1976)

    Google Scholar 

  • Papermaster, D.S., Schneider, B.G., Zorn, M.A., Kraehenbuhl, J.P.: Immunocytochemical localization of opsin in outer segments and Golgi zones of frog photoreceptor cells. J. Cell Biol.77, 196–210 (1978)

    Google Scholar 

  • Rapp, L.M., Williams, T.F.: Rhodopsin content and electroretino-graphic sensitivity in light damaged rat retina. Nature267, 835–836 (1977)

    Google Scholar 

  • Röhlich, P.: Fine structural changes induced in photoreceptors by light and prolonged darkness. In: Symposium on neurobiol-ogy of invertebrates, Tihany, Hungary, 1967. Salanki, J. (ed.). pp. 95–109. New York: Plenum Press 1968

    Google Scholar 

  • Rosenkranz, J.: New aspects of the ultrastructure of frog rod outer segments. In: International review of cytology. Bourne, G.H., Danielli, J.F. (eds.), pp. 26–158. New York: Academic Press 1977

    Google Scholar 

  • Sanchez, J.A., Fuentes-Pardo, B.: Circadian rhythm in the amplitude of the electroretinogram in the isolated eyestalk of the crayfish. Comp. Biochem. Physiol.56, 601–605 (1977)

    Google Scholar 

  • Sato, S.: Compound eyes ofCulex pipiens vat. pallens Coquillett. (Morphological studies on the compound eye in the mosquito, No. 1.) Sci. Rep. Tôhoku Univ.18, 331–341 (1950)

    Google Scholar 

  • Sato, S., Kato, M., Toriumi, M.: Structural changes of the compound eye ofCulex pipiens vat. pallens Coquillett in the process to dark adaptation. Sci. Rep. Tôhoku Univ.23, 91–101 (1957)

    Google Scholar 

  • Smith, R.I.: The role of the sinus glands in retinal pigment migration in grapsoid crabs. Biol. Bull.95, 169–185 (1948)

    Google Scholar 

  • Strong, J., Lisman, J.: Initiation of light adaptation in barnacle photoreceptors. Science200, 1485–1487 (1978)

    Google Scholar 

  • Tamai, M., Tierstein, P., Goldman, A., O'Brien, P., Chader, G.: The pineal gland does not control rod outer segment shedding and phagocytosis in the rat retina and pigment epithelium. Invest. Ophthalmol.17, 558–561 (1978)

    Google Scholar 

  • Tuurala, O., Lehtinen, A., Nyholm, M.: Zu den photomechanischen Erscheinungen im Auge einer Asselart,Oniscus asellus L. Ann. Acad. Sci. Fenn. Ser. A499, 1–13 (1966)

    Google Scholar 

  • Walcott, B.: Unit studies on light adaptation in the retina of the crayfishCheirax destructor. J. Comp. Physiol.94, 207–218 (1974)

    Google Scholar 

  • Walcott, N.: Anatomical changes during light-adaptation in insect compound eyes. In: The compound eye and vision of insects. Horridge, G.A. (ed.), pp. 20–33. Oxford: Clarendon Press 1975

    Google Scholar 

  • Waterman, T.H.: Polarization sensitivity. In: Handbook of Sensory Physiology, vol. VII/6B. Autrum, H. (ed.). Berlin, Heidelberg, New York: Springer (in press) 1980

    Google Scholar 

  • Webb, H.M., Brown, F.A., Jr.: Diurnal rhythm in the regulation of distal retinal pigment inPalaemonetes. J. Cell. Comp. Physiol.41, 103–122 (1953)

    Google Scholar 

  • Welsh, J.H.: Diurnal rhythm of the distal pigment cells in the eyes of certain crustaceans. Proc. Natl. Acad. Sci. U.S.A.16, 386–395 (1930)

    Google Scholar 

  • Welsh, J.H.: The action of eye-stalk extracts on retinal pigment migration in the crayfishCambarus bartoni. Biol. Bull.77, 119–125 (1939)

    Google Scholar 

  • Welsh, J.H.: The sinus glands and 24-hour cycles of retinal pigment migration. J. Exp. Zool.86, 35–49 (1941)

    Google Scholar 

  • White, R.H.: The effect of light and light deprivation upon the ultrastructure of the larval mosquito eye. II. The rhabdom. J. Exp. Zool.166, 405–426 (1967)

    Google Scholar 

  • White, R.H., Lord, E.: Diminution and enlargement of the mosquito rhabdom in light and darkness. J. Gen. Physiol.65, 583–598 (1975)

    Google Scholar 

  • Yamamoto, M., Yoshida, M.: Fine structure of the ocelli of a synaptid holothurianOpheodesoma spectabilis and the effects of light and darkness. Zoomorphologie90, 1–17 (1978)

    Google Scholar 

  • Young, J.Z.: Light- and dark-adaptation in the eyes of some cephalopods. Proc. Zool. Soc. London140, 255–272 (1963)

    Google Scholar 

  • Young, R.W.: Visual cells and the concept of renewal. Invest. Ophthalmol.15, 700–725 (1976)

    Google Scholar 

  • Young, R.W.: The daily rhythm of shedding and degradation of cone outer segment membranes in the lizard retina. J. Ultrastruct. Res.61, 172–185 (1977)

    Google Scholar 

  • Young, R.W.: The daily rhythms of shedding and degradation of rod and cone outer segment membranes in the chick retina. Invest. Ophthalmol.17, 105–116 (1978a)

    Google Scholar 

  • Young, R.W.: Visual cells, daily rhythms, and vision research. Vision Res.18, 573–578 (1978b)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by Grant EY-00405 from the U.S. National Institutes of Health. We are grateful to the Bermuda Biological Station and especially to the Hawaii Marine Laboratory for the supply of live experimental animals.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nässel, D.R., Waterman, T.H. Massive diurnally modulated photoreceptor membrane turnover in crab light and dark adaptation. J. Comp. Physiol. 131, 205–216 (1979). https://doi.org/10.1007/BF00610429

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00610429

Keywords

Navigation