Skip to main content
Log in

A new approach to the study of the oxidation of metals in hostile environments

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The oxidation or general corrosion behavior of metals at pressures of 1 atm or more is usually investigated by oxidizing samples under prescribed conditions and then subsequently characterizing the surface produced using one or more of the experimental methods available. This article describes a method which obviates the necessity of transferring samples from the oxidizing environment to the instrument for analysis, is nondestructive, and monitors the oxidizing surface in situ. The oxidation of iron, chromium, and a 9% chromium-iron alloy in carbon dioxide at atmospheric pressure and at 773°K is described. The surfaces of these materials were analyzed by Auger electron spectroscopy during exposure to the gas. Spectra and diagrams illustrating the variation in surface composition as oxidation proceeded are shown and possible mechanisms for the oxidation reactions are briefly discussed. The formation of the surface oxide on iron and on the 9% Cr-Fe alloy appears to follow very similar paths under the conditions of oxidation used. In all the materials studied trace impurities such as sulfur participated in the oxidation reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Tyzack and H. C. Cowen,At. Energy Rev. 14, 263 (1976).

    Google Scholar 

  2. P. Auger,J. Phys., Radium 6, 205 (1925).

    Google Scholar 

  3. C. C. Chang, inCharacterization of Solid Surfaces, P. F. Kane and G. R. Larrabee, eds. (Plenum, New York, 1974), p. 509.

    Google Scholar 

  4. J. A. Bearden and A. F. Burr,Rev. Mod. Phys. 39, 125 (1967).

    Google Scholar 

  5. K. Siegbahn, C. Nordling, A. Fahlman, R. Nordberg, K. Hamrin, J. Hedman, G. Johansson, T. Bergmark, S. E. Karlsson, I. Lindgren, and B. J. Lindberg,ESCA-Atomic, Molecular and Solid-State Structure Studied by Means of Electron Spectroscopy (Almqvist and Wiksell, Uppsala, 1967). (New edition, North-Holland, Amsterdam, in press).

    Google Scholar 

  6. M. Suleman and E. B. Pattinson,Surf. Sci. 35, 75 (1973).

    Google Scholar 

  7. F. J. Szalkowski and G. A. Somorjai,J. Chem. Phys. 56, 6097 (1972).

    Google Scholar 

  8. S. Ekeland and C. Leygraf,Surf. Sci. 40, 179 (1973).

    Google Scholar 

  9. G. C. Allen and R. K. Wild,J. Chem. Soc., Dalton Trans. 493 (1974).

  10. G. C. Allen and R. K. Wild,J. Electron Spectrosc. Relat. Phenom. 5, 409 (1974).

    Google Scholar 

  11. D. T. Quinto and W. D. Robertson,Surf. Sci. 27, 645 (1971).

    Google Scholar 

  12. J. W. Hass and D. J. Pocker,J. Vac. Sci. Technol. 11, 1087 (1974).

    Google Scholar 

  13. D. F. Stein,J. Vac. Sci. Technol. 12, 268 (1975).

    Google Scholar 

  14. D. M. Hercules,Anal. Chem. 48, 3022 (1976).

    Google Scholar 

  15. P. L. Harrison, R. B. Dooley, R. K. Lister, D. B. Meadowcroft, P. J. Nolan, R. E. Pendlebury, P. L. Surman, and M. R. Wootton, inCorrosion of Steels in CO2, D. R. Holmes, R. B. Hill, and L. M. Wyatt, eds. (British Nuclear Energy Society, 1974), p. 220.

  16. P. A. Redhead, J. P. Hobson, and E. V. Kornelson,The Physical Basis of Ultra High Vacuum (Chapman and Hall, London, 1968).

    Google Scholar 

  17. K. Nakayama, M. Ono, and H. Shimizu,J. Vac. Sci. Technol. 9, 749 (1972).

    Google Scholar 

  18. J. P. Coad and J. G. Cunningham,J. Electron Spectrosc. Relat. Phenom. 3, 435 (1974).

    Google Scholar 

  19. G. Betz, G. K. Wehner, L. Toth, and A. Joshi,J. Appl. Phys. 45, 5312 (1974).

    Google Scholar 

  20. M. Seo, J. B. Lumsden, and R. W. Staehle,Surf. Sci. 50, 541 (1975).

    Google Scholar 

  21. M. P. Hooker and J. T. Grant,Surf. Sci. 51, 328 (1975).

    Google Scholar 

  22. R. K. Wild,Vacuum 26, 447 (1976).

    Google Scholar 

  23. R. K. Wild,Corros. Sci. 17, 87 (1977).

    Google Scholar 

  24. R. K. Wild,Corros. Sci. 13, 105 (1973).

    Google Scholar 

  25. R. Hales, A. C. Hill, and R. K. Wild,Corros. Sci. 13, 325 (1973).

    Google Scholar 

  26. L. A. Harris,J. Appl. Phys. 39, 1419 (1968).

    Google Scholar 

  27. J. P. Coad and J. C. Rivière,Proc. Roy. Soc. London, Ser. A 331, 403 (1972).

    Google Scholar 

  28. M. P. Seah and E. D. Hondros,Proc. Roy. Soc. London, Ser. A 335, 191 (1973).

    Google Scholar 

  29. R. E. Weber and A. L. Johnson,J. Appl. Phys. 40, 314 (1969).

    Google Scholar 

  30. G. C. Allen, P. M. Tucker, and R. K. Wild,J.C.S. Faraday, Part II, (submitted for publication).

  31. J. C. P. Garret, S. K. Lister, P. J. Nolan, and J. T. Cook, inCorrosion of Steels in CO2, D. R. Holmes, R. B. Hill, and L. M. Wyatt, eds. (British Nuclear Energy Society, 1974), p. 298.

  32. A. M. Pritchard and A. E. Truswell, inCorrosion of Steels in CO2, D. R. Holmes, R. B. Hill, and L. M. Wyatt, eds. (British Nuclear Energy Society, 1974), p. 234.

  33. J. H. G. Monypenny,Stainless Iron and Steel, Vol. 1 (Chapman and Hall, London, 1951).

    Google Scholar 

  34. C. C. Chang, inCharacterization of Solid Surfaces, P. F. Kane and G. R. Larrabee, eds. (Plenum, New York, 1974), p. 542.

    Google Scholar 

  35. G. C. Allen, I. T. Brown, and R. K. Wild,Met. Sci. J. (submitted for publication).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allen, G.C., Brown, I.T. & Wild, R.K. A new approach to the study of the oxidation of metals in hostile environments. Oxid Met 12, 83–110 (1978). https://doi.org/10.1007/BF00609976

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00609976

Key words

Navigation