Skip to main content
Log in

Responses of bristle field sensilla inApis mellifica to geomagnetic and astrophysical fields

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Summary

The response of a bristle field sensillum inApis mellifica may be described as follows.

  1. 1.

    Distinct artificial magnetic fields (especially tilting of the static vector) influence the impulse frequency of the sensory cell.

  2. 2.

    At certain hours of the day characteristic changes of the impulse frequency occur.

  3. 3.

    Under predominantly natural magnetic field (MF) conditions there are significant correlations between the variation of selected MF components and impulse frequency (IMP). However, when a spatially oscillating MF-vector is applied, the IMP course does not always show a formal coincidence with MF variation.

  4. 4.

    Our hypothesis is that in this case the trigonometric constellation of sun (S) and moon (M) becomes the dominant guiding factor.

  5. 5.

    IMP frequency — with a given total azimuthal shift of the SM-system — may be calculated by the following equation using S and M azimuth and height data:

    $$IMP_{freq} = \pm (0.46 \cdot (\sin Az_S + \sin h_S ) + (sin Az_M + \sin h_M ))/\Delta t$$

    Az=azimuth (in angular degrees),h=height (in angular degrees).

  6. 6.

    A quantization of the space in 90° steps and the preference of the north-south direction in this orientation system are evident. MF influences are discussed in relation to nuclear magnetic resonance; effects caused by the sun-moon constellation seem to be a gravitational modulation. A partial synthesis of both parameters is possible. Those results are discussed from a quantum mechanical point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Az M :

azimuth of the moon

Az S :

azimuth of the sun

B :

magnetic induction in Gauss

B o :

static magnetic field in Gauss

β :

nuclear magneton = 0.5050 · 10−23 erg/Gauss

β n :

Bohr magneton = 0.9273·10−20 erg/Gauss

γ :

=10−5 Oe

gg/ :

gyromagnetic ratio (a nuclear specific constant) in Hz/Gauss

ΔC :

MF-variation of one of the components X, Y, Z

ΔE :

energy in erg (1 erg=10−7 W·s)

EMF :

earth's magnetic field

ESR :

electron spin resonance

g :

Landé-factor (without dimension) for the electron: 2.0023, for the proton: 5.5855

H :

magnetic field force in Oersted

h :

Planck's constant 6.6256·10−34 Js

h M :

height of the moon

h S :

height of the sun

IMP :

impulses of the sensory cell

k :

Boltzmann-constant=1.3804·10−16 erg/Kelvin

MET :

middle European time

MF :

magnetic field

m S :

magnetic spin moment (+or −)

n 1,n 2 :

population number of nuclear spin states at the lower and upper energy level. The ratio n2/n1 is governed by the Boltzmann law

NMR :

nuclear magnetic resonance

v o :

resonance frequency in Hertz

Oe :

Oersted, unit of the magnetic field force

SEMI :

semi-transformation

SMC :

sun-moon constellation

T :

absolute temperature in Kelvin

TOTAL :

total transformation

ω :

angular frequency

ω L :

Larmor-frequency

References

  • Akoev GN, Ilyinsky OB, Zadan PM (1975) Responses of electroreceptors (ampullae of Lorenzini) of skates to electric and magnetic fields. J Comp Physiol 106:127–136

    Google Scholar 

  • Andrianov GN, Brown HR, Ilyinsky OB (1974) Responses of central neurons to electrical and magnetic stimuli of the ampullae of Lorenzini in the black sea skate. J Comp Physiol 93:287–299

    Google Scholar 

  • Aschoff J (1960) Exogenous and endogenous components in circadian rhythms. Cold Spring Harbor Symp Quant Biol 25:11–28

    Google Scholar 

  • Aschoff J (1981a) A survey on biological rhythms. In: Aschoff J (ed) Handbook of behavioural neurobiology, vol 4, Biological rhythms. Plenum Press, New York London, pp 3–10

    Google Scholar 

  • Aschoff J (1981b) Freerunning and entrained circadian rhythms. In: Aschoff J (ed) Handbook of behavioural neurobiology, vol 4, Biological rhythms. Plenum Press, New York London, pp 81–93

    Google Scholar 

  • Barnwell FH, Brown FA jr (1964) Responses of planarians and snails. In: Barnothy MF (ed) Biological effects of magnetic fields. Plenum Press, New York, pp 263–278

    Google Scholar 

  • Breitmaier E, Bauer G (1977)13C-NMR-Spektroskopie. Thieme, Stuttgart New York

    Google Scholar 

  • Brown FA jr, Park YH (1967) Association-formation between photic and subtle geophysical stimulus patterns — a new biological concept. Biol Bull 132:311–319

    Google Scholar 

  • Brown FA jr, Barnwell FH, Webb HM (1964) Adaptation of the magnetoreceptive mechanism of mud-snails to geomagnetic strength. Biol Bull 127:221–231

    Google Scholar 

  • Brown HR, Ilyinsky OB (1978) The ampullae of Lorenzini in the magnetic field. J Comp Physiol 126:333–341

    Google Scholar 

  • Dubrov AP (1978) The geomagnetic field and life. Plenum Press, New York London

    Google Scholar 

  • Enright JT (1980) The timing of sleep and wakefulness. Studies of brain function, vol 3. Springer, Berlin Heidelberg New York, pp 61–198

    Google Scholar 

  • Greenberger DM, Overhauser AW (1980) The role of gravity in quantum theory. Sci Am 242:54–64

    Google Scholar 

  • Kilbert K (1979) Geräuschanalyse der Tanzlaute der Honigbiene (Apis mellifica) in unterschiedlichen magnetischen Feldsituationen. J Comp Physiol 132:11–25

    Google Scholar 

  • Knowles PF, Marsh D, Rattle HWE (1976) Magnetic resonance of biomolecules. An introduction to the theory and practice of NMR and ESR in biological systems. John Wiley & Sons, London New York Sydney Toronto

    Google Scholar 

  • Korall H (1978) Zeitdressuren anApis mellifica unter künstlichen Magnetfeldbedingungen. Diplomarbeit, Universität Würzburg

  • Korall H, Leucht T, Martin H (1983) Kernspinresonanz — ein neuer Ansatzpunkt für die Mißweisung der Honigbiene? Akad Wiss Literatur Mainz, pp 139–140

  • Lang HJ (1972) Untersuchungen zur Tages-, Monats -und Jah-resperiodik der Lichtempfindlichkeit beim Guppy (Lebistes reticulatus). Habilitationsschrift, Universität Göttingen

  • Lehninger AL (1975) Biochemie. Verlag Chemie, Weinheim

    Google Scholar 

  • Lepley AR, Closs GL (1973) Chemical induced magnetic polarisation. John Wiley & Sons, New York

    Google Scholar 

  • Lindauer M (1976) Orientierung der Tiere. Verh Dtsch Zool Ges 1976:156–183

  • Lindauer M, Martin H (1968) Die Schwereorientierung der Bienen unter dem Einfluß des Erdmagnetfeldes. Z Vergl Physiol 60:219–243

    Google Scholar 

  • Lindauer M, Martin H (1985) The biological significance of the earth's magnetic field. Progr Sens Physiol 5:119–145

    Google Scholar 

  • Lindauer M, Nedel JO (1959) Ein Schweresinnesorgan der Honigbiene. Z Vergl Physiol 42:334–364

    Google Scholar 

  • Marino AA, Becker RO (1977) Biological effects of extremely low frequency electric and magnetic fields: a review. Physiol Chem Physics 9/2:131–147

    Google Scholar 

  • Markl H (1962) Borstenfelder an den Gelenken als Schweresinnesorgane bei Ameisen und anderen Hymenopteren. Z Vergl Physiol 45:475–569

    Google Scholar 

  • Martin H, Lindauer M (1966) Sinnesphysiologische Leistungen beim Wabenbau der Honigbiene. Z Vergl Physiol 53:372–404

    Google Scholar 

  • Martin H, Lindauer M (1973) Orientierung im Erdmagnetfeld. Fortschr Zool 21/2/3:211–228

    Google Scholar 

  • Martin H, Lindauer M (1977) Der Einfluß des Erdmagnetfeldes auf die Schwereorientierung der Honigbiene (Apis mellifica). J Comp Physiol 122:145–187

    Google Scholar 

  • Martin H, Lindauer M (1979) Peripherie and central adaptation phenomena following functional elimination of gravireceptors in honeybees (Apis mellifera). Zool Jb Physiol 83:95–105

    Google Scholar 

  • Martin H, Martin U (1981) Tagesperiodische Dynamik des Erdmagnetfeldes und der Gravitation als exogener Zeitgeber für Bienen. Jahrbuch 1981. Akademie der Wissenschaften und der Literatur Mainz

  • Martin H, Martin U (1987) Transfer of a time-signal isochronous with local time in translocation experiments to the geographical longitude. J Comp Physiol A 160:3–9

    Google Scholar 

  • Martin H, Lindauer M, Martin U (1983) ‘Zeitsinn’ und Aktivitätsrhythmus der Honigbiene — endogen oder exogen gesteuert? Bayer Akad Wissensch Math-naturwiss Kl, S 1–41

  • McLaughlin AC, Cullis PR, Hemminga M, Brown FF, Brokklehurst J (1977) Magnetic resonance studies of model and biological membranes. In: Dwek RA, Campbell ID, Richards RE, Williams RJP (eds) NMR in biology. Academic Press, London New York San Francisco, pp 231–246

    Google Scholar 

  • Mittelstaedt H (1963) Bikomponenten-Theorie der Orientierung. Erg Biol 26:253–258

    Google Scholar 

  • Palmer JD (1974) Biological clocks in marine organisms: The control of physiological and behavioral tidal rhythms. John Wiley & Sons, New York London Sydney Toronto

    Google Scholar 

  • Renner M (1957) Neue Versuche über den Zeitsinn der Honigbiene. Z Vergl Physiol 40:85–118

    Google Scholar 

  • Russo F, Caldwell WE (1971) Biomagnetic phenomena: some implications for the behavioral and neurophysiological sciences. Genet Psychol Monogr 84:177–243

    Google Scholar 

  • Schulten K (1982) Magnetic field effects in chemistry and biology. Festkörperprobleme XXII: 61–83

    Google Scholar 

  • Sengbusch P von (1979) Molekular -und Zellbiologie. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Slichter CP (1964) Principles of magnetic resonance (with examples from solid state physics). Harper & Row, New York, Evanston and Weatherhill Inc, Tokyo

    Google Scholar 

  • Thurm U (1961) Die Beziehung zwischen Reiz, Rezeptorpotential und Nervenimpulsen bei einzelnen mechanorezeptiven Zellen von Bienen. Dissertation, Universität München

  • Thurm U (1962) Ableitung der Rezeptorpotentiale und Nervenimpulse einzelner Cuticula-Sensillen bei Insekten. Z Naturforsch 17b: 285–286

    Google Scholar 

  • Thurm U (1978) Grundzüge der Transduktionsmechanismen in Sinneszellen. In: Hoppe W, Lohmann W, Markl H, Ziegler H (eds) Biophysik. Springer, Berlin Heidelberg New York, pp 391–402

    Google Scholar 

  • Thurm U (1980) Kraft und Deformation des Reizes an einer Mechanorezeptorendigung. Jahrestagung der deutschen Neurobiologen, Göttingen

  • Weinberg S (1974) Recent progress in gauge theories of the weak, electromagnetic and strong interactions. Rev Modern Physics 46:255–277

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated in gratitude to Prof. Dr. Drs. h.c. M. Lindauer.

This research was supported by the Akademie der Wissenschaf-ten und der Literatur, Mainz, and the Deutsche Forschungsge-meinschaft

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korall, H., Martin, H. Responses of bristle field sensilla inApis mellifica to geomagnetic and astrophysical fields. J. Comp. Physiol. 161, 1–22 (1987). https://doi.org/10.1007/BF00609451

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00609451

Keywords

Navigation