Skip to main content
Log in

Optics of the butterfly eye

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Summary

The afocal apposition optics of butterfly eyes was examined from both a geometrical optics and a wave optics point of view. We used several different species of butterfly but put special emphasis on a common Australian nymphalid,Heteronympha merope. From the anatomy of the retina, the optics of isolated components of the eye and the ophthalmoscopy of the intact living eye we derived the following.

  1. 1.

    The proximal part of the crystalline cone behaves as a powerful lens which, according to our measurements of optical power, turns the complete optical system into an afocal telescope with an angular magnification of 6.4 (inHeteronympha). The rhabdom tip lies in the exit pupil of the telescope and is imaged into the cornea with a magnification of 9.1 (in the same species).

  2. 2.

    Using light reflected from the eye's tapetum, we studied the waveguide mode phenomena of the rhabdom. Different butterflies showed either one, two or three waveguide modes, depending on the rhabdom diameter. The mode patterns were observed at four different optical planes: at the cornea, at infinity, at the back focal plane of the corneal lens — which, for this measurement, was optically neutralised — and at the plane of the deep pseudopupil.

  3. 3.

    During light adaptation the closure of the pupil caused the modes to disappear in sequence, starting with the highest order. The behaviour of the fading modes indicates that the pupil acts by absorption rather than by a change of refractive index around the rhabdom.

  4. 4.

    The modes were used to measure the waveguide parameter of the rhabdom, from which its refractive index was deduced to be 1.36.

  5. 5.

    The distinction between near-field and farfield versions of the mode patterns provided further evidence in favour of an afocal optical system.

Two different interpretations of the butterfly optical system are discussed and we present a hypothesis to explain how both afocal apposition and refracting superposition optical systems evolved in insect eyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bernard GD (1975) Physiological optics of the fused rhabdom. In: Snyder AW, Menzel R (eds) Photoreceptor optics. Springer, Berlin Heidelberg New York, pp 78–97

    Google Scholar 

  • Cleary P, Deichel G, Kunze P (1977) The superposition image in the eye ofEphestia kühniella. J Comp Physiol 119:73–84

    Google Scholar 

  • Eltringham H (1919) Butterfly vision. Trans R Entomol Soc Lond 79:1–49

    Google Scholar 

  • Exner S (1891) Die Physiologie der facettirten Augen von Krebsen und Insecten. Franz Deuticke, Leipzig Wien

    Google Scholar 

  • Franceschini N (1975) Sampling of the visual environment by the compound eye of the fly: fundamentals and applications. In: Snyder AW, Menzel R (eds) Photoreceptor optics. Springer, Berlin Heidelberg New York, pp 98–125

    Google Scholar 

  • Franceschini N, Kirschfeld K (1971) Les phénomènes de pseudopupille dans l'oeil composé deDrosophila. Kybernetik 9:159–182

    Google Scholar 

  • Galbraith W (1955) The optical measurement of depth. Q J Microsc Sci 96:285–288

    Google Scholar 

  • Gambling WA, Payne DN, Matsumura H, Dyott RB (1976) Determination of core diameter and refractive index difference of single mode fibers by observation of the far-field pattern. Microwaves Opt Acoust 1:13–17

    Google Scholar 

  • Hateren JH van (1984) Waveguide theory applied to optically measured angular sensitivities of fly photoreceptors. J Comp Physiol A 154:761–771

    Google Scholar 

  • Hateren JH van (1985) The Stiles-Crawford effect in the eye of the blowfly,Calliphora erythrocephala. Vision Res 25:1305–1315

    Google Scholar 

  • Hateren JH van, Nilsson D-E (in press) Butterfly optics exceed the theoretical limits of conventional apposition eyes. Biol Cybern

  • Horowitz BR (1981) Theoretical considerations of the retinal receptor as a waveguide. In: Enoch JM, Tobey FL Jr (eds) Vertebrate photoreceptor optics. Springer, Berlin Heidelberg New York, pp 219–300

    Google Scholar 

  • Horridge GA, Giddings C, Stange G (1972) The superposition eye of skipper butterflies. Proc R Soc Lond B 182:457–495

    Google Scholar 

  • Kirschfeld K, Franceschini N (1968) Optische Eigenschaften der Ommatidien im Komplexauge vonMusca. Kybernetik 5:47–52

    Google Scholar 

  • Kolb G (1977) The structure of the eye ofPieris brassicae L. (Lepidoptera). Zoomorphologie 87:123–146

    Google Scholar 

  • Kolb G (1978) Zur Rhabdomstruktur des Auges vonPieris brassicae L. (Insecta, Lepidoptera). Zoomorphologie 91:191–200

    Google Scholar 

  • Kunze P (1979) Apposition and superposition eyes. In: Autrum H (ed) Vision in invertebrates (Handbook of sensory physiology, vol VII/6 A). Springer, Berlin Heidelberg New York, pp 441–502

    Google Scholar 

  • Land MF (1981) Optics and vision in invertebrates. In: Autrum H (ed) Vision in invertebrates (Handbook of sensory physiology, vol VII/6 B). Springer, Berlin Heidelberg New York, pp 471–592

    Google Scholar 

  • Land MF (1984) The resolving power of diurnal superposition eyes measured with an ophthalmoscope. J Comp Physiol A 154:515–533

    Google Scholar 

  • Miller WH (1979) Ocular optical filtering. In: Autrum H (ed) Vision in invertebrates (Handbook of sensory pyhsiology, vol VII/6 A). Springer, Berlin Heidelberg New York, pp 69–143

    Google Scholar 

  • Miller WH, Bernard GD (1968) Butterfly glow. J Ultrastruct Res 24:286–294

    Google Scholar 

  • Nilsson D-E (1983) Evolutionary links between apposition and superposition optics in crustacean eyes. Nature 302:818–821

    Google Scholar 

  • Nilsson D-E, Land MF, Howard J (1984) Afocal apposition optics in butterfly eyes. Nature 312:561–563

    Google Scholar 

  • Nilsson D-E, Labhart T, Meyer E (1987) Photoreceptor design and optical properties affecting polarization sensitivity in ants and crickets. J Comp Physiol 161:645–658

    Google Scholar 

  • Pask C, Barrell KF (1980a) Photoreceptor optics I: Introduction to formalism and excitation in a lens-photoreceptor system. Biol Cybern 36:1–8

    Google Scholar 

  • Pask C, Barrell KG (1980b) Photoreceptor optics II: Application to angular sensitivity and other properties of a lensphotoreceptor system. Biol Cybern 36: 9–18

    Google Scholar 

  • Pocholle JP (1979) Single mode optical fiber characterisation by the LP11 mode radiation pattern. Opt Com 31:143–147

    Google Scholar 

  • Ribi WA (1978) Ultrastructure and migration of screening pigments in the retina ofPieris rapae L. (Lepidoptera, Pieridae) Cell Tissue Res 191:57–73

    Google Scholar 

  • Ribi WA (1979a) Coloured screening pigments cause red eye glow hue in pierid butterflies. J Comp Physiol 132:1–9

    Google Scholar 

  • Ribi WA (1979b) Structural differences in the tracheal tapetum of diurnal butterflies. Z Naturforsch 34c:284–287

    Google Scholar 

  • Smakman JGJ, Hateren JH van, Stavenga DG (1984) Angular sensitivity of blowfly photoreceptors: intracellular measurements and wave-optical predictions. J Comp Physiol A 155:239–247

    Google Scholar 

  • Snitzer E (1961) Cylindrical dielectric waveguide modes. J Opt Soc Am 51:491–498

    Google Scholar 

  • Snitzer E, Osterberg H (1961) Observed dielectric waveguide modes in the visible spectrum. J Opt Soc Am 51:499–505

    Google Scholar 

  • Snyder AW (1975) Photoreceptor optics — Theoretical principles. In: Snyder AW, Menzel R (eds) Photoreceptor optics. Springer, Berlin Heidelberg New York, pp 38–55

    Google Scholar 

  • Snyder AW (1977) Acuity of compound eyes: Physical limitations and design. J Comp Physiol 116:161–182

    Google Scholar 

  • Snyder AW, Love DJ (1983) Optical waveguide theory. Chapman and Hall, London New York

    Google Scholar 

  • Snyder AW, Stavenga DG, Laughlin SB (1977) Spatial information capacity of compound eyes. J Comp Physiol 116:183–207

    Google Scholar 

  • Stavenga DG (1979) Pseudopupils of compound eyes. In: Autrum H (ed) Vision in invertebrates (Handbook of sensory physiology, vol VII/6A). Springer, Berlin Heidelberg New York, pp 357–439

    Google Scholar 

  • Stavenga DG, Numan JAJ, Tinbergen J, Kuiper JW (1977) Insect pupil mechanisms II. Pigment migration in retinula cells of butterflies. J Comp Physiol 113:73–93

    Google Scholar 

  • Tuurala O (1954) Histologische und physiologische Untersuchungen über die photomechanischen Erscheinungen in den Augen der Lepidopteren. Ann Acad Sci Fenn A IV 24:1–69

    Google Scholar 

  • Yagi N, Koyama N (1963) The compound eye of Lepidoptera. Shinkyo, Tokyo

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nilsson, D.E., Land, M.F. & Howard, J. Optics of the butterfly eye. J. Comp. Physiol. 162, 341–366 (1988). https://doi.org/10.1007/BF00606122

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00606122

Keywords

Navigation