Skip to main content
Log in

Ionic mechanisms of electrical activity in somatic muscle of the nematodeAscaris lumbricoides

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

The ionic dependence of the myogenic spike potentials and slow waves recorded fromAscaris lumbricoides somatic muscles has been investigated. Spikes appear to be mediated exclusively by calcium ions; the spike active potential varies with calcium concentration as expected for a calcium electrode and spikes persist in sodium-free media (Fig. 2). Slow waves can be mediated either by sodium or calcium; they persist when calcium or sodium are removed separately, but not when both are removed together (Figs. 3, 4, 6).

In rhythmically active preparations, a burst of slow waves and spikes accompanies each contraction. Two phenomena may be related to the mechanism of this modulation:

1) TEA, although it does not prolong slow waves or spikes, induces rhythmic bursts of activity similar to spontaneous modulation (Fig. 5). This TEA-induced modulation appears to be myogenic. 2) Under conditions where calcium influx is reduced (either by addition of EGTA to the bath or by replacement of calcium with barium or strontium), very long-duration “square waves” are observed (Figs. 4. 7. 8). The square waves resemble slow waves in their ionic dependence, but differ in their sensitivity to TEA and to variation in the external potassium concentration. It is suggested that modulation and square waves involve the same channels. The significance of these results in understanding the role of myogenic activity in nematode locomotion is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bird, A.F.: The Structure of Nematodes. New York: Academic Press 1971

    Google Scholar 

  • Brading, A.F., Caldwell, P.C.: The resting membrane potential of the somatic muscle cells ofAscaris lumbricoides. J. Physiol. (Lond.)217, 605–624 (1971)

    Google Scholar 

  • Connor, J.A., Prosser, C.L., Weems, W.A.: A study of pace-maker activity in intestinal smooth muscle. J. Physiol. (Lond.)240, 671–701 (1974)

    Google Scholar 

  • Crofton, H.D.: Nematodes. London: Hutchinson University Library 1966

    Google Scholar 

  • De Bell, J.T., Del Castillo, J., Sanchez, V.: Electrophysiology of the somatic muscle cells ofAscaris lumbricoides. J. cell. comp. Physiol.62, 159–177 (1963)

    Google Scholar 

  • Del Castillo, J., De Mello, W.C., Morales, T.: Influence of some ions on the membrane potential ofAscaris muscle. J. gen. Physiol.48, 129–140 (1964)

    Google Scholar 

  • Del Castillo, J., De Mello, W.C., Morales, T.: The initiation of action potentials in the somatic musculature ofAscaris lumbricoides. J. exp. Biol.46, 263–279 (1967)

    Google Scholar 

  • Eckert, R., Lux, H.D.: A voltage-sensitive persistent calcium conductance in neuronal somata ofHelix. J. Physiol. (Lond.)254, 129–151 (1976)

    Google Scholar 

  • Frankenhaeuser, B., Hodgkin, A.L.: The action of calcium on the electrical properties of squid axons. J. Physiol. (Lond.)137, 218–244 (1957)

    Google Scholar 

  • Geduldig, D., Junge, D.: Sodium and calcium components of action potentials in theAplysia giant neurone. J. Physiol. (Lond.)199, 347–365 (1968)

    Google Scholar 

  • Goldschmidt, R.: Das Nervensystem vonAscaris lumbricoides undmegalocephala I. Z. wiss. Zool.90, 73–136 (1908)

    Google Scholar 

  • Goldschmidt, R.: Das Nervensystem vonAscaris lumbricoides undmegalocephala II. Z. wiss. Zool.92, 306–357 (1909)

    Google Scholar 

  • Gray, J., Lissman, H.W.: The locomotion of nematodes. J. exp. Biol.41, 135–154 (1964)

    Google Scholar 

  • Hagiwara, S., Chichibu, S., Naka, K.: The effects of various ions on resting and spike potentials of barnacle muscle fibers. J. gen. Physiol.48, 163–179 (1964)

    Google Scholar 

  • Hagiwara, S., Fukuda, J., Eaton, D.C.: Membrane currents carried by Ca, Sr, and Ba in barnacle muscle fiber during voltage clamp. J. gen. Physiol.63, 564–578 (1974)

    Google Scholar 

  • Hagiwara, S., Naka, K.: The initiation of spike potential in barnacle muscle fibers under low intracellular Ca+ +. J. gen. Physiol.48, 141–162 (1964)

    Google Scholar 

  • Hagiwara, S., Nakajima, S.: Effects of the intracellular Ca ion concentration upon the excitability of the muscle fiber membrane of a barnacle. J. gen. Physiol.49, 807–818 (1966)

    Google Scholar 

  • Iwasaki, S., Satow, Y.: Sodium- and calcium-dependent spike potentials in the secretory neuron of the X-organ of the crayfish. J. gen. Physiol.57, 216–238 (1971)

    Google Scholar 

  • Jarman, M.: Electrical activity in the muscle cells ofAscaris lumbricoides. Nature (Lond.)184, 1244 (1959)

    Google Scholar 

  • Kerkut, G.A., York, B.: The electrogenic sodium pump. Bristol, England: Scientechnica Ltd. 1971

    Google Scholar 

  • Kleinhaus, A.L., Prichard, J.W.: Calcium dependent action potentials produced in leech Retzius cells by tetraethylammonium chloride. J. Physiol. (Lond.)246, 351–361 (1975)

    Google Scholar 

  • Krishtal, O.A., Magura, I.S.: Calcium ions as inward current carriers in mollusc neurones. Comp. Biochem. Physiol.35, 857–866 (1970)

    Google Scholar 

  • Meech, R.W.: Intracellular calcium injection causes increased potassium conductance inAplysia nerve cells. Comp. Biochem. Physiol.42A, 493–499 (1972)

    Google Scholar 

  • Meves, H.: The ionic requirements for the production of action potentials inHelix pomatia neurones. Pflügers Arch.304, 215–241 (1968)

    Google Scholar 

  • Naitoh, Y., Eckert, R.: Electrical properties ofParamecium caudatum: all-or-none electrogenesis. Z. vergl. Physiol.61, 453–472 (1968)

    Google Scholar 

  • Ward, S., Thomson, N., White, J.G., Brenner, S.: Electron microscopical reconstruction of the anterior sensory anatomy of the nematodeCaenorhabditis elegans. J. comp. Neurol.160, 313–338 (1975)

    Google Scholar 

  • Ware, R., Clark, D., Crossland, K., Russell, R.L.: The nerve ring of the nematodeCaenorhabditis elegans: sensory input and motor output. J. comp. Neurol.162, 71–110 (1975)

    Google Scholar 

  • Weidman, S.: Heart electrophysiology. Ann. Rev. Physiol.36, 155–169 (1974)

    Google Scholar 

  • Weisblat, D.A., Russell, R.L.: Propagation of electrical activity in the nerve cord and muscle syncytium of the nematodeAscaris lumbricoides. J. comp. Physiol.107, 293–307 (1976)

    Google Scholar 

  • White, J.G., Southgate, E., Thomson, J.N., Brenner, S.: The structure of the ventral nerve cord ofCaenorhabditis elegans. Phil. Trans. Roy. Soc. (in press)

Download references

Author information

Authors and Affiliations

Authors

Additional information

We thank Mr. Mac McGlaughlin for help in obtainingAscaris. This work was supported by a Sloan Foundation grant in Neuroscience and a U.S. Public Health Service grant (NS 09654) to R.L.R., by an NIH Traineeship on grant BCH Tol GM 01262-12 to D.A.W., and by an NIH Postdoctoral Fellowship (1 FO2 GM55347) to L.B.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weisblat, D.A., Byerly, L. & Russell, R.L. Ionic mechanisms of electrical activity in somatic muscle of the nematodeAscaris lumbricoides . J. Comp. Physiol. 111, 93–113 (1976). https://doi.org/10.1007/BF00605526

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00605526

Keywords

Navigation