Skip to main content
Log in

Color opponent neurons of the honeybee in a heterochromatic flicker test

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

  1. 1.

    Response properties of different temporal response components such as ON, OFF, tonic or phasic of visual interneurons of the honeybee in the lateral protocerebrum and the proximal lobula were examined by means of intracellular recordings. These neurons were tested with homochromatic flicker light (monochromatic light was flickered against darkness, f=0.5 Hz) and heterochromatic flicker light (two monochromatic lights were flickered against each other, f=0.5 Hz).

  2. 2.

    The results show that successive chromatic information can be coded only in the same response component, especially in the tonic component (Figs. 1 B and 3).

  3. 3.

    In color opponent neurons, the color-specific properties lie in different response components. They are possibly involved in the coding of the successive color contrast, but they cannot differentiate between two monochromatic lights in the heterochromatic flicker test (Fig. 7).

  4. 4.

    Different thresholds for broad-banded and color-specific reaction components can lead to an intensity-dependent separation of color- and intensity-coding (Fig. 5).

  5. 5.

    Reaction thresholds can be changed by heterochromatic flicker light (Fig. 7 A), the response components can be enhanced (Fig. 1), or a new component can appear (Fig. 7 B).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Autrum H, Zwehl V von (1964) Spektrale Empfindlichkeit einzelner Sehzellen des Bienenauges. Z Vergl Physiol 48:357–384

    Google Scholar 

  • DeValois RL (1973) Central mechanisms of color vision. In: Jung R (ed) Handbook of sensory physiology, vol VII/3A, Springer, Berlin Heidelberg New York, pp 210–253

    Google Scholar 

  • DeValois RL, Jones AE (1961) Single-cell analysis of the organization of the primate color-vision system. In: Jung R, Kornhuber HH (eds) The visual system: Neurophysiology and psychophysics. Springer, Berlin Göttingen Heidelberg, pp 178–190

    Google Scholar 

  • DeValois RL, Abramov I, Mead WR (1967) Single cell analysis of wavelength discrimination at the lateral geniculate nucleus in the macaque. J Neurophysiol 30:415–433

    Google Scholar 

  • DeValois RL, Snodderly Jr DM, Yund EW, Hepler NK (1977) Responses of macaque lateral geniculate cells to luminance and color figures. Sens Processes 1:244–259

    Google Scholar 

  • Erber J, Menzel R (1977) Visual interneurons in the median protocerebrum of the bee. J Comp Physiol 121:65–77

    Google Scholar 

  • Gouras P, Zrenner E (1979) Enhancement of luminance flicker by color-opponent mechanisms. Science 205:587–589

    Google Scholar 

  • Gur M, Purple RL (1979) Some temporal output properties of color opponent units in the ground squirrel. Brain Res 166:233–244

    Google Scholar 

  • Hertel H (1980) Chromatic properties of identified interneurons in the optic lobes of the bee. J Comp Physiol 137:215–231

    Google Scholar 

  • Honegger H-W (1978) Sustained and transient responding units in the medulla of the cricketGryllus campestris. J Comp Physiol 125:259–266

    Google Scholar 

  • Kien J, Menzel R (1977a) Chromatic properties of interneurons in the optic lobe of the bee. I. Broad band neurons. J Comp Physiol 113:17–34

    Google Scholar 

  • Kien J, Menzel R (1977b) Chromatic properties of interneurons in the optic lobe of the bee. II. Narrow band and colour opponent neurons. J Comp Physiol 113:35–53

    Google Scholar 

  • Menzel R (1979) Spectral sensitivity and colour vision in invertebrates. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6A. Springer, Berlin Heidelberg New York, pp 509–580

    Google Scholar 

  • Menzel R (1980) Verhaltensuntersuchungen zum Farbensehen der Biene nahe der Perzeptionsschwelle. Verh Dtsch Zool Ges 1980:357

    Google Scholar 

  • Menzel R, Blakers M (1976) Colour receptors in the bee eye — morphology and spectral sensitivity. J Comp Physiol 108:11–33

    Google Scholar 

  • Menzel R, Snyder AW (1974) Polarized light detection in the bee,Apis mellifera. J Comp Physiol 88:247–270

    Google Scholar 

  • Michael CR (1978) Color-sensitive complex cells in monkey striate cortex. J Neurophysiol 41:1250–1266

    Google Scholar 

  • Mimura K (1974) Analysis of visual information in lamina neurones of the fly. J Comp Physiol 88:335–372

    Google Scholar 

  • Neumeyer C (1975) Über den simultanen Farbkontrast der Honigbiene. Thesis, Universität Freiburg

  • Neumeyer C, Helversen O von (1976) Simultaner Farbkontrast bei der Honigbiene. Verh Dtsch Zool Ges 1976:69–260

    Google Scholar 

  • Swihart SL (1972) The neural basis of colour vision in the butterflyHeliconius errato. J Insect Physiol 18:1015–1025

    Google Scholar 

  • Wiesel TN, Hubel DH (1966) Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. J Neurophysiol 29:1115–1156

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

I thank Prof. Randolf Menzel for support in carrying out this work. I am grateful to Horst Hertel and Nick Strausfeld for helpful discussions, as well as their suggestions regarding the English text.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riehle, A. Color opponent neurons of the honeybee in a heterochromatic flicker test. J. Comp. Physiol. 142, 81–88 (1981). https://doi.org/10.1007/BF00605479

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00605479

Keywords

Navigation