Skip to main content
Log in

The effects of amines on evoked potentials recorded in the mushroom bodies of the bee brain

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

  1. 1.

    Dopamine and octopamine are applied iontophoretically to specific regions of the bee brain and the effects measured on evoked potentials recorded in the α-lobe of the mushroom bodies.

  2. 2.

    Octopamine enhances the size of potentials evoked by light stimuli. Dopamine has no significant effect on light-evoked potentials.

  3. 3.

    Both dopamine and octopamine reduce the size of potentials evoked by stimulation of the antennae with air or scent. In some animals however, octopamine, unlike dopamine, enhances olfactory responses.

  4. 4.

    Differences between the effects of dopamine and octopamine on neural activity in the mushroom bodies of the bee brain may be related to the differences between the effects of these amines on behavioral responses in the bee reported in earlier studies (Mercer and Menzel 1982).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AGT :

antenno-glomerular-tract

References

  • Dismukes K (1977) New look at the aminergic nervous system. Nature (London) 269:557–558

    Google Scholar 

  • Dymond GR, Evans PD (1979) Biogenic amines in the nervous system of the cockroach,Periplaneta americana: association of octopamine with mushroom bodies and dorsal unpaired median (DUM) neurones. Insect Biochem 9:535–545

    Google Scholar 

  • Elofsson R, Klemm N (1972) Monoamine-containing neurones in the optic ganglia of crustaceans and insects. Z Zellforsch Mikrosk Anat 133:475–499

    Google Scholar 

  • Erber J, Masuhr T, Menzel R (1980) Localization of short-term memory in the brain of the bee (Apis mettifera). Physiol Entomol 5:343–358

    Google Scholar 

  • Evans PD (1980a) Biogenic amines in the insect nervous system. Adv Insect Physiol 15:317–473

    Google Scholar 

  • Evans PD (1980b) Octopamine receptors in insects. In: Sattelle DB, Hall LM, Hildebrand JG (ed) Receptors for Neurotransmitters, Hormones and Pheromones in Insects. Elsevier/North Holland, Amsterdam

    Google Scholar 

  • Evans PD (1981) Multiple receptor types for octopamine in the locust. J Physiol (London) 318:99–122

    Google Scholar 

  • Homberg U (1981) Ableitungen und Lucifer yellow Markierung von Neuronen des Tractus olfacto-globularis im Bienengehirn. Verh Dtsch Zool Ges 74:176

    Google Scholar 

  • Kaulen P (1982) Feldpotentiale und eine Analyse der Stromquellendichte in den Corpora pedunculata vonApis mellifera. Diploma Thesis, Freie Universität Berlin, FRG

    Google Scholar 

  • Kenyon FC (1896) The brain of the bee. A preliminary contribution to the morphology of the nervous system of the arthropoda. J Comp Neurol 6:133–210

    Google Scholar 

  • Klemm N (1974) Vergleichend-histochemische Untersuchungen über die Verteilung monoamin-haltiger Strukturen im Oberschlundganglion von Angehörigen verschiedener Insekten-Ordnungen. Entomol Germ 1: 21–49

    Google Scholar 

  • Klemm N (1976) Histochemistry of putative transmitter substances in the insect brain. Prog Neurobiol 7:99–169

    Google Scholar 

  • Maynard DM (1956) Electrical activity in the cockroach cerebrum. Nature (London) 77:529–530

    Google Scholar 

  • Maynard DM (1967) Organization of central ganglia. In: Wiersma CAG (ed) Invertebrate nervous systems. Chicago Univ Press, Chicago, pp 231–255

    Google Scholar 

  • Menzel R, Erber J (1978) Learning and memory in bees. Sci Am 239:80–87

    Google Scholar 

  • Menzel R, Erber J, Masuhr T (1974) Learning and memory in the honeybee. In: Barton Browne L (ed) Experimental analysis of insect behavior. Springer, Berlin Heidelberg New York, pp 195–217

    Google Scholar 

  • Mercer AR, Menzel R (1982) The effects of biogenic amines on conditioned and unconditioned responses to olfactory stimuli in the honeybee,Apis mellifera. J Comp Physiol 145:363–368

    Google Scholar 

  • Mobbs PG (1982) The brain of the honeybeeApis mellifera. I. The connections and spatial organization of the mushroom bodies. Philos Trans R Soc London Ser B 298:309–354

    Google Scholar 

  • Murdock LL (1971) Catecholamines in arthropods: a review. Comp Gen Pharmacol 2:254–274

    Google Scholar 

  • O'Shea M, Rowell CHF (1976) The neuronal basis of a sensory analyser, the acridid movement detector system. II. Response decrement, convergence, and the nature of the excitatory afferents to the fan-like dendrites of the LGMD. J Exp Biol 65:289–308

    Google Scholar 

  • Pichon Y (1974) The pharmacology of the insect nervous system. In: Rockstein M (ed) The physiology of insecta. Vol 4, 2nd ed., Academic Press, New York London, pp 101–174

    Google Scholar 

  • Robertson HA (1976) Octopamine, dopamine and noradrenaline content of the brain of the locust,Schistocerca gregaria. Experientia 32:552–553

    Google Scholar 

  • Rowell CHF, Horn G (1968) Distribution and arousal in the response of single nerve cells in an insect brain. J Exp Biol 49:171–183

    Google Scholar 

  • Schürmann FW (1970) Über die Struktur der Pilzkörper des Insektengehirns. I. Synapsen im Pedunculus. Z Zellforsch Mikrosk Anat 103:365–381

    Google Scholar 

  • Schürmann FW (1972) Über die Struktur der Pilzkörper des Insektengehirns. II. Synaptische Schaltungen im Alpha-Lobus des HeimchensAcheta domestica L. Z Zellforsch Mikrosk Anat 127:240–257

    Google Scholar 

  • Steiner FA, Pieri L (1969) Comparative microelectrophoretic studies of invertebrate and vertebrate neurones. Prog Brain Res 31:191–199

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mercer, A.R., Erber, J. The effects of amines on evoked potentials recorded in the mushroom bodies of the bee brain. J. Comp. Physiol. 151, 469–476 (1983). https://doi.org/10.1007/BF00605463

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00605463

Keywords

Navigation