Skip to main content
Log in

Fragmentation of a single filament during tension in a matrix as a method of determining adhesion

  • Published:
Mechanics of Composite Materials Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature cited

  1. M. Narkis, E. J. H. Chen, and R. B. Pipes, “Review of methods for characterization of interfacial fiber-matrix interactions,” Polymer Composites,9, No. 4, 245–251 (1988).

    Google Scholar 

  2. M. R. Piggott, “The interface in carbon fibre composites,” Carbon,27, No. 5, 657–662 (1989).

    Google Scholar 

  3. M. R. Piggott, P. S. Chua, and D. Andison, “The interface between glass and carbon fibers and thermosetting polymers,” Polymer Composites,6, No. 4, 242–247 (1985).

    Google Scholar 

  4. N. H. Ladizesky and J. M. Ward, “The adhesion behavior of high modulus polyethylene fibres following plasma and chemical treatment,” J. Mater. Sci.,24, No. 10, 3763–3773 (1989).

    Google Scholar 

  5. A. S. Hoffman, T. S. Keller, A. Miyake, B. D. Ratner, and B. J. McElroy, “Surface modification of Kevlar fibers for improved adsorption to epoxy resin matrices,” 3rd Pacif. Chem. Eng. Congr., Seoul (1983), Vol. 2, pp. 54–63.

    Google Scholar 

  6. M. R. Piggott, “The role of compliance in single fibre pull out experiments,” 8th Ann. Meet. Adhes. Soc., Savannah, Ga (1985), pp. 2/a–2/c.

  7. S. L. Chuang, N.-J. Chu, and W. T. Whang, “Effect of polyamic acids on interfacial shear strength of a fibre/resin interface,” J. Appl. Polym. Sci.,41, 373–382 (1990).

    Google Scholar 

  8. B. Miller, P. Muri, and L. Rebenfeld, “Microbond method for determination of the shear strength of a fibre/resin interface” Composites Sci. Tech.,28, No. 1, 17–32 (1987).

    Google Scholar 

  9. U. Gaur and B. Miller, “Microbond method for determination of the shear strength of a fibre/resin interface: evaluation of experimental parameters,” Composites Sci. Tech.,34, No. 1, 35–51 (1989).

    Google Scholar 

  10. Yu. A. Gorbatkina, Adhesive Strength in Polymer-Fiber Systems [in Russian], Khimiya, Moscow (1987).

    Google Scholar 

  11. V. A. Dovgyalo, S. F. Zhandarov, and E. V. Pisanova, “Determination of adhesive strength in a thermoplast ” thin-fiber system,“ Mekh. Kompozitn. Mater., No. 1, 9–12 (1990).

    Google Scholar 

  12. P. Järvela, K. Laitinen, J. Purola, and P. Törmälä, ”The three-fibre method for measuring glass fibre to resin bond strength,“ Int. J. Adh. Adhesives,3, No. 3, 141–147 (1983).

    Google Scholar 

  13. J. P. Favre and J. Perrin, ”Carbon fibre adhesion to organic matrix,“ J. Mater. Sci.,7, No. 10, 1113–1118 (1972).

    Google Scholar 

  14. J. F. Mandell, D. H. Grande, T.-H Tsiang, and F. J. McGarry, ”Modified microdebonding test for directin situ fiber/matrix bond strength determination in fiber composites,“ Composite Materials: Test and Des. (7th Conf.), Philadelphia (1986), pp. 87–108.

  15. L. T. Drzal, M. J. Rich, and P. F. Lloyd, ”Adhesion of graphite fibers to epoxy matrices: I. The role of surface fiber treatment,“ J. Adhes.,16, No. 1, 1–30 (1983).

    Google Scholar 

  16. L. T. Drzal, ”Interfacial behavior of aramid and graphite fibers in an epoxy matrix,“ 15th Nat. SAMPE Tech. Conf., Azusa, California (1983), Vol. 15, pp. 190–201.

    Google Scholar 

  17. A. N. Netravali, R. B. Henstenburg, S. L. Phoenix, and P. Schwanz, ”Interfacial shear strength studies using the singlefilament-composite test. 1: Experiments on graphite fibers in epoxy,“ Polymer Composites,10, No. 4, 226–241 (1989).

    Google Scholar 

  18. A. S. Crasto, S. H. Own, and R. V. Subramanian, ”The influence of the interphase on composite properties: poly(ethylene-co-acrylic acid) and poly(methyl vinyl ether-co-maleic anhydride) electrodeposited on graphite fibers,“ Polymer Composites,9, No. 1, 78–92 (1988).

    Google Scholar 

  19. A. S. Wimolkiatisak and J. P. Bell, ”Interfacial shear strength and failure modes of interphase-modified graphite-epoxy composites,“ ibid,10, No. 3, 162–172 (1989).

    Google Scholar 

  20. L. T. Drzal, M. J. Rich, J. D. Camping, and W. J. Park, ”Interfacial shear strength and failure mechanisms in graphite fiber composites,“ Proc. 35th Annual Tech. Conf., SPI, Reinf. Plast. Comp. Inst. (1982), No. 20-C.

  21. D. Jacques and J.-P. Favre, ”Modelisation statistique du processus de fragmentation dans les composites-modeles a monofilament,“ JNC 6: C.-r. 6emes Journees Nat. Compos., Paris (1988), pp. 169–182.

  22. A. T. DiBenedetto, L. Nicolais, L. Ambrosio, and J. Groeger, ”Stress transfer and fracture in single fiber/epoxy composites,“ Composite Interfaces: Proc. 1st Intern. Conf. Compos. Interfaces (ICCI-1), New York (1986), pp. 47–54.

  23. L. T. Dzral, M. J. Rich, M. F. Koenig, and P. F. Lloyd, ”Adhesion of graphite fibers to epoxy matrices. II: Effect of fiber finish,“ J. Adhes.,16, 133–152 (1983).

    Google Scholar 

  24. W. D. Bascom and R. M. Jensen, ”Stress transfer in single fiber/resin tensile tests,“ J. Adhes.,19, 219–226 (1986).

    Google Scholar 

  25. L. T. Drzal, M. J. Rich, and M. F. Koenig, ”Adhesion of graphite fibers to epoxy matrices. III: The effect of hydrothermal exposure,“ ibid,18, No. 1, 49–72 (1985).

    Google Scholar 

  26. A. N. Netravali, P. Schwanz, and S. L. Phoenix, ”Study of interfaces of high-performance glass fibers and DGEBA-based epoxy resins using single-fiber-composite test,“ Polymer Composites,10, No. 6, 385–388 (1989).

    Google Scholar 

  27. T. Ohsawa, A. Nakayama, M. Miwa, and A. Hasegawa, ”Temperature dependence of critical fiber length for glass fiber-reinforced thermosetting resins,“ J. App. Polym. Sci.,22, 3203–3212 (1978).

    Google Scholar 

  28. D. Jacques and J. P. Favre, ”Determination of the interfacial shear strength by fibre fragmentation in resin systems with a small rupture strain,“ ICCM and ECCM: Proc. 6th Intern. Conf. Composite Materials. Combined 2nd Eur. Conf. Composite Materials. London; New York (1987), Vol. 5, pp. 471–480.

  29. L. Dilandro, A. T. Dibenedetto, and J. Groeger, ”The effect of fiber-matrix stress transfer on the strength of fiber- reinforced composite materials,“ Polymer Composites,9, No. 3, 209–221 (1988).

    Google Scholar 

  30. W. D. Bascom, R. M. Jensen, and L. W. Cordner, ”The adhesion of carbon fibers to thermoplastic polymers,“ ICCM and ECCM: Proc. 6th Intern. Conf. Composite Materials. Combined 2nd Eur. Conf. Composite Materials, Vol. 5, 424–438 (1987).

    Google Scholar 

  31. El Asloun, M. Nardin, and J. Schultz, ”Stress transfer in single-fiber composites: effect of adhesion, elastic modulus of fibre and matrix, and polymer chain mobility,“ J. Mat. Sci.,24, No. 3, 1835–1844 (1989).

    Google Scholar 

  32. L. Di Landro and M. Pegoraro, ”Carbon fibre “ thermoplastic matrix adhesion,” ibid,22, 1980–1986 (1987).

    Google Scholar 

  33. M. J. Folkes, W. K. Wong, and R. W. Ward, “Determination of interfacial bond strength in fibre thermoplastic composites,” New Materials and Their Appl.: Proc. Intern. Phys. Conf., Bristol, Philadelphia (1988), pp. 111–116.

  34. A. T. DiBenedetto, “Evaluation of fiber surface treatments in composite materials,” Pure Appl. Chem.,57, No. 11, 1659–1665 (1985).

    Google Scholar 

  35. D. A. Clarke and M. G. Bader, “Direct observation of fibre fracture in a model composite,” J. Mater. Sci. Lett.,5, No. 9, 903–904 (1986).

    Google Scholar 

  36. L. Di Landro and M. Pegoraro, “Interfacial adhesion between carbon fibers and PEEK thermoplastic matrix,” Chim. Ind. Milan,70, No. 6, 86–89 (1988).

    Google Scholar 

  37. D. Rouby, “Application de l'emission acoustique a la caracterisation micromecanique de l'interface fibre-matrice,” INC 6: C.-r. 6emes Journees Nat. Compos., Paris (1988), pp. 183–194.

  38. A. Kelly and W. R. V. Tyson, “Tensile properties of fibre-reinforced metals: copper/tungsten and copper/molybdenum,” Mech. Phys. Solids,13, 329–342 (1965).

    Google Scholar 

  39. W. A. Fraser, F. H. Ancker, and A. T. DiBenedetto, “A computer modeled, single filament technique for measuring coupling and sizing agent effects in fiber reinforced composites,” Proc. Conf. on Reinforced Plastics, SPI (1975), Sect. 22A, pp. 1–14.

  40. R. B. Henstenburg and S. L. Phoenix, “Interfacial shear strength studies using the single-filament-composite test. Pt. II: A probability model and Monte Carlo simulation,” Polymer Composites,10, No. 5, 390–408 (1989).

    Google Scholar 

  41. K. E. Perepelkin, Structure and Properties of Fibers [in Russain], Khimiya, Moscow (1985).

    Google Scholar 

  42. W. A. Weibull, A Statistical Theory of the Strength of Materials, Stockholm (1959).

  43. H. D. Wagner, “A model for longitudinal splitting from surface defects in anisotropic filaments,” J. Mater. Sci. Lett.,5, No. 2, 229–230 (1986).

    Google Scholar 

  44. A. K. De and K. K. Phani, “Gauge length effect on the strength of silicon carbide and sapphire filaments,” J. Compos. Mater.,24, 220–232 (1990).

    Google Scholar 

  45. S. D. Durham, J. D. Lynch, and W. J. Padgett, “Inference for strength distributions of brittle fibers under increasing failure rate,” J. Compos. Mater.,22, 1131–1140 (1988).

    Google Scholar 

  46. K. K. Phani and A. K. De, “A flaw distribution function for failure analysis of brittle materials,” J. Appl. Phys.,62, 4433–4439 (1987).

    Google Scholar 

  47. D. Kalish, B. K. Tariyal, and R. O. Pickwick, “Strength distribution and gauge length extrapolation in optical fibres,” Am. Ceram. Soc. Bull.,56, No. 5, 491–501 (1977).

    Google Scholar 

  48. K. K. Phani, “Strength distribution and gauge length extrapolation in glass fibre,” J. Mater. Sci.,23, No. 1, 1189–1194 (1988).

    Google Scholar 

  49. K. K. Phani, “The strength-length relationship for carbon fibre,” Composite Sci. Technol.,30, No. 1, 59–71 (1987).

    Google Scholar 

  50. K. K. Phani, “A new modified Weibull distribution function,” J. Am. Ceram. Soc.,70, No. 8, C-182–C-186 (1987).

    Google Scholar 

  51. G. Goda and H. Fukunaga, “The evaluation of the strength distribution of silicon carbide and alumina fibre by a multimodal Weibull distribution,” J. Mater. Sci.,21, 4475–4482 (1986).

    Google Scholar 

  52. K. Jakus, J. E. Ritter, T. Service Jr., and D. Sonderman, “Evaluation of bimodal concurrent flaw distribution,” J. Am. Ceram. Soc.,64, No. 12, C-174–C-182 (1981).

    Google Scholar 

  53. J. A. Kies, “The strength of glass,” Nav. Res. Lab. Rept., No. 5093 (1956).

  54. K. K. Phani and A. K. De, “Evaluation of concurrent flaw population in silicon carbide in terms of a modified Weibull distribution function,” J. Am. Ceram. Soc.,71, No. 4, C-196 – C-201 (1988).

    Google Scholar 

  55. S. H. Own, R. V. Subramanian, and S. C. Saunders, “A bimodal lognormal model of the distribution of strength of carbon fibres: effect of electrodeposition of titanium di(diociylpyrophosphite)oxyacetate,” J. Mater. Sci.,21, No. 11, 3912–3920 (1986).

    Google Scholar 

  56. El. M. Asloun, J. B. Donnet, G. Guilpain, M. Nardin, and J. Schultz, “On the estimation of the tensile strength of carbon fibres at short lengths,” ibid.,,24, No. 10, 3540–3510 (1989).

    Google Scholar 

  57. V. P. Tamuzh, M. T. Azarova, V. M. Bondarenko, Yu. A. Gutans, Yu. G. Korabel'nikov, P. E. Pikshe, and O. F. Suluyanov, “Fracture of unidirectional carbon-fiber-reinforced plastics and realization of the strength properties of the fibers,” Mekh. Kompozitn. Mater., No. 1, 34–41 (1982).

    Google Scholar 

  58. A. I. Sviridenok, T. K. Sirotina, E. V. Pisanova, and S. F. Zhandarov, “Effect of biochemical treatment on the strength and adsorption properties of fibers of poly-n-amidobenzimidazole,” Mekh. Kompozitn. Mater., No. 5, 771–776 (1991).

    Google Scholar 

  59. P. Schwartz, M. Rosensaft, and H. D. Wagner, “The effects of filament diameter variability on the failure of the Kevlar-49/epoxy strands,” J. Mater. Sci. Lett.,4, No. 11, 1409–1411 (1985).

    Google Scholar 

  60. K. Shami, “Mechanism of transmission of a load through an interface,” in: Interfaces in Polymer Composites [Russian translation], Mir, Moscow (1978), pp. 42–87.

    Google Scholar 

  61. M. Kodama, I. Karino, and J. Kobayashi, “Interaction between the reinforcement and matrix in carbon-fiber-reinforced composite: effect of forming the thin layer of polyimide resin on carbon fiber byin situ polymerization,” J. Appl. Polym. Sci.,33, 361–373 (1987).

    Google Scholar 

  62. H. Zeng and B. Kong, “Investigation of the structure and properties of the carbon fiber/nylon 1010 composites,” Composite Interfaces: Proc. 1st Intern. Conf. Composite Interfaces (ICCC-1), New York (1986), pp. 55–64.

  63. Z. Maekawa, H. Hamada, S. Yoshioka, N. Ikuta, T. Tanimoto, and T. Hirashima, “Fiber fragment distribution in embedded single filament test,” Interface Polymer, Ceram. and Metal Matrix Compos.: Proc. 2nd Intern. Conf. Composite Interfaces, New York (1988), pp. 553–565.

  64. S. Brelant, “The interaction of carbonaceous fibers with organic matrices,” 30th Nat. SAMPE Symp., Covina, Calif. (1985), Vol. 30, pp. 271–279.

    Google Scholar 

  65. J. L. Kardos, “The role of the interface in polymer composites ” some myths, mechanisms, and modifications,“ Molecular Characterizat. Composite Interfaces. Proc. Symp. Polymer Composites: Interfaces. New York, London (1985), pp. 1–11.

  66. R. Dave and L. A. Lorenzo, ”A note on polymeric innerlayered single fiber interfacial strength determination,“ Polymer Composites,10, No. 3, 199–201 (1989).

    Google Scholar 

  67. H. L. Cox, ”The elasticity and strength of paper and other fibrous materials,“ Brit. J. Appl. Phys.,3, 72–85 (1952).

    Google Scholar 

  68. G. P. Cherepanov, Mechanics of Brittle Fracture, New York (1979), pp. 616–731.

  69. J. M. Whitney and L. T. Drzal, ”Three dimensional stress distribution around an isolated fiber fragment,“ Tough Composites: Am. Soc. Test. Mater. Spec. Tech. Publ., No. 937 (1937), pp. 179–196.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Mekhanika Kompozitnykh Materialov, No. 3, pp. 384–403, May–June, 1992.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhandarov, S.F., Pisanova, E.V. & Dovgyalo, V.A. Fragmentation of a single filament during tension in a matrix as a method of determining adhesion. Mech Compos Mater 28, 270–286 (1992). https://doi.org/10.1007/BF00604921

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00604921

Keywords

Navigation