Skip to main content
Log in

Response characteristics of cold cell on the antenna ofLocusta migratoria L.

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Summary

The dendritic outer segment of the cell which is most likely the cold unit in the poreless coeloconic sensilla onLocusta migratoria antennae, has finger-like projections up to 1.5 μm long and 0.13 μm thick (Fig. 1). This unit responds to constant temperature, to slowly changing temperature and to step changes. Under stationary conditions impulse frequency attained 35 imp/s. Between 14 °C and 41 °C the higher frequencies were associated with the higher temperatures (Fig. 5). In this range the differential sensitivity is positive but not large: + 0.8 (imp/s)/°C. Its resolving power for steady temperature is 4.7 °C.

Downward step changes produced by shifting between airstreams at different temperatures yield far higher frequencies (Figs. 2, 3). Step amplitudes were between −0.1 °C and −12 °C; the conditioning temperature from which the steps were initiated, was between 16 °C and 33 °C. Frequency peaked during the first 50 ms after stimulus onset (Fig. 2) and reached its highest values (310–340 imp/s) at initial temperatures above 30 °C and steps larger than −10 °C (Fig. 4). The mean differential sensitivity from 23 curves was −19 (imp/s)/°C and the resolving power 0.6 °C.

During slowly changing temperature the impulse frequency was governed by two parameters simultaneously: ambient temperature and its rate of change. Rates were between 0.001 °C/s or less, and 0.03 °C/s in either direction. Frequency was higher during slow cooling at a given temperature than during slow warming (Fig. 6). The average differential sensitivity to the rate of change was −210 (imp/s)/(°C/s). Further, the larger responses to cooling developed at lower ambient temperatures (differential sensitivity: −1.0 (imp/s)/°C). It is to be noted that this sign is negative, in contrast to the sign for differential sensitivity to constant temperature and also for the influence of initial temperature on the response to downward step changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

b :

Slope of characteristic curve, differential sensitivity

F :

impulse frequency in imp/s

imp/s :

impulses/s

P w :

partial pressure of water vapor in torr

r :

correlation coefficient

T :

temperature in °C

Δ T :

T-step

Δ x :

resolving power in °C

References

  • Altner H, Loftus R (1985) Ultrastructure and function of insect thermo- and hygroreceptors. Annu Rev Entomol 30:273–295

    Google Scholar 

  • Altner H, Tichy H, Altner I (1978) Lamellated outer dendritic segments of a sensory cell within a poreless thermo- and hygroreceptive sensillum of the insectCarausius morosus. Cell Tissue Res 191:287–304

    Google Scholar 

  • Altner H, Routil Ch, Loftus R (1981) The structure of bimodal chemo-, thermo-, and hygroreceptive sensilla on the antenna ofLocusta migratoria. Cell Tissue Res 215:289–308

    Google Scholar 

  • Ameismeier F (1985) Embryonic development and molting of the antennal coeloconic no pore- and double-walled wall pore sensilla inLocusta migratoria (Insecta, Orthopteroidea). Zoomorphology 105:356–366

    Google Scholar 

  • Boeckh J (1967) Reaktionsschwelle, Arbeitsbereich und Spezifität eines Geruchsrezeptors auf der Heuschreckenantenne. Z Vergl Physiol 55:378–406

    Google Scholar 

  • Corbière-Tichané G, Bermond N (1972) Sensilles énigmatiques de de l'antenne de certains Coléoptères. Z Zellforsch 127:9–33

    Google Scholar 

  • Corbière-Tichané G, Loftus R (1983) Antennal thermal receptors of the cave beetle,Speophyes lucidulus Delar. II. Cold receptor response to slowly changing temperature. J Comp Physiol 153:343–351

    Google Scholar 

  • Davis EE, Sokolove PG (1975) Temperature response of antennal receptors of the mosquitoAedes aegypti. J Comp Physiol 96:223–236

    Google Scholar 

  • Diem K, Lenter C (eds) (1968) Wissenschaftliche Tabellen, 7th edn. Ciba-Geigy, Basel

    Google Scholar 

  • Haug T (1985) Ultrastructure of the dendritic outer segments of sensory cells in poreless (‘no-pore’) sensilla of insects. Cell Tissue Res 242:313–322

    Google Scholar 

  • Haug T (1986) Struktur, Funktion und Projektion der antennalen Thermo- und Hygrorezeptoren vonAntheraea pernyi (Lepidoptera: Saturniidae). Dissertation, Universität Regensburg

  • Hess E, Vlimant M (1983) The tarsal sensory systems ofAmblyomma variegatum Fabricius (Ixodidae, Metastriata). II. No pore sensilla. Rev Suisse Zool 90:157–167

    Google Scholar 

  • Hess E, Loftus R (1984) Warm and cold receptors of two sensilla on the foreleg tarsi of the tropical bont tickAmblyomma variegatum. J Comp Physiol A 155:187–195

    Google Scholar 

  • Kafka WA (1970) Molekulare Wechselwirkungen bei der Erregung einzelner Riechsensillen. Z Vergl Physiol 70:105–143

    Google Scholar 

  • Kürten L, Schmidt U, Schäfer K (1984) Warm and cold receptors in the nose of the vampire batDesmodus rotundus. Naturwissenschaften 71:327–328

    Google Scholar 

  • Lacher V (1964) Elektophysiologische Untersuchungen an einzelnen Rezeptoren für Geruch, Kohlendioxid, Luftfeuchtigkeit und Temperatur auf der Antenne der Arbeitsbiene und der Drohne (Apis mellifera). Z Vergl Physiol 48:587–623

    Google Scholar 

  • Loftus R (1968) The response of the antennal cold receptor ofPeriplaneta americana to rapid temperature changes and to steady temperature. Z Vergl Physiol 59:413–455

    Google Scholar 

  • Loftus R (1969) Differential thermal components in the response of the antennal cold receptor ofPeriplaneta americana to slowly changing temperature. Z Vergl Physiol 63:415–433

    Google Scholar 

  • Loftus R (1976) Temperature-dependent dry receptor on antenna ofPeriplaneta. Tonic response. J Comp Physiol 111:153–170

    Google Scholar 

  • Loftus R, Corbière-Tichané G (1981) Antennal warm and cold receptors of the cave beetle,Speophyes lucidulus Delar, in sensilla with a lamellated dendrite. I. Response to sudden temperature change. J Comp Physiol 143:443–452

    Google Scholar 

  • Loftus R, Corbière-Tichané G (1987) Response of antennal cold receptors of the catopid beetles,Speophyes lucidulus Delar. andCholeva angustata Fab. to very slowly changing temperature. J Comp Physiol A 161:399–405

    Google Scholar 

  • McIver S (1973) Fine structure of antennal sensilla coeloconica of culicine mosquitoes. Tissue Cell 5:105–112

    Google Scholar 

  • Nishikawa M, Yokohari F, Ishibashi T (1985) The antennal thermoreceptor of the camel cricket,Tachycines asynamorus. J Insect Physiol 31:517–524

    Google Scholar 

  • Sachs L (1982) Statistische Methoden, 5. Aufl. Springer, Berlin, Heidelberg New York

    Google Scholar 

  • Tichy H, Loftus R (1987) Response characteristics of a cold receptor in the stick insectCarausius morosus. J Comp Physiol A 160:33–42

    Google Scholar 

  • Waldow U (1970) Elektrophysiologische Untersuchungen an Feuchte-, Trocken- und Kälterezeptoren auf der Antenne der WanderheuschreckeLocusta. Z Vergl Physiol 69:249–283

    Google Scholar 

  • Yokohari F (1981) The sensillum capitulum, an antennal hygro- and thermoreceptive sensillum of the cockroach,Periplaneta americana L. Cell Tissue Res 216:525–543

    Google Scholar 

  • Yokohari F (1983) The coelocapitular sensillum, an antennal hygro- and thermoreceptive sensillum of the honey bee,Apis mellifera L. Cell Tissue Res 233:355–365

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ameismeier, F., Loftus, R. Response characteristics of cold cell on the antenna ofLocusta migratoria L.. J. Comp. Physiol. 163, 507–516 (1988). https://doi.org/10.1007/BF00604904

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00604904

Keywords

Navigation