Mechanics of Composite Materials

, Volume 19, Issue 1, pp 118–124 | Cite as

Predicting the fatigue life of woven fiberglass under steady and nonsteady cyclic loading

  • R. P. Apinis
  • S. L. Skalozub
Article

Conclusions

  1. 1.

    Analytical expressions describing the kinetics of the damage parameter of the woven fiberglass during its fatigue failure are obtained for any level of steady cyclic load in the 38–70 MPa interval of stress amplitudes.

     
  2. 2.

    It is established that the critical value of the damage parameter D* in the stress-amplitude interval under consideration is independent of the stress level at which the specimen experiences fatigue failure.

     
  3. 3.

    Methods of computing the fatigue life of woven fiberglass under a nonsteady cyclic loading are developed.

     
  4. 4.

    Methods are proposed for the accelerated determination of the fatigue curve of woven fiberglass.

     

Keywords

Fatigue Stress Level Fatigue Life Cyclic Loading Fiberglass 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    S. V. Serensen, V. P. Kogaev, and R. M. Shneiderovich, Bearing Capacity and Strength Computations of Machine Components [in Russian], Moscow (1975).Google Scholar
  2. 2.
    Yu. I. Kizima, “Fatigue of woven fiberglass in bending at vibration frequencies of sound,” Candidate's Dissertation, Technical Sciences, Riga (1972).Google Scholar
  3. 3.
    V. M. Parfeev, “Damage accumulation in certain rigid polymer materials under steady and nonsteady cyclic bending,” Candidate's Dissertation, Technical Sciences, Riga (1978).Google Scholar
  4. 4.
    P. P. Oldyrev, “Damage accumulation in fiberglass under cyclic tension-compression,” Mekh. Polim., No. 5, 881–885 (1971).Google Scholar
  5. 5.
    R. P. Apinis and S. L. Skalozub, “Apparatus for the fatigue testing of fiberglass specimens under symmetric tension-compression at the vibration frequencies of sound,” Mekh. Polim., No. 3, 525–528 (1972).Google Scholar
  6. 6.
    V. S. Kuksenko, L. G. Orlov, and D. I. Frolov, “A concentration criterion for the enlargement of cracks in heterogeneous materials,” in: Failure of Composite Materials [in Russian], Riga (1979), pp. 25–31.Google Scholar
  7. 7.
    V. P. Tamuzh and V. S. Kuksenko, Fracture Micromechanics of Polymer Materials [in Russian], Riga (1978).Google Scholar
  8. 8.
    I. M. Vasinyuk, “Interrelation between the extent of damage sustained by cyclically deformable materials and inelasticity characteristics,” Candidate's Dissertation, Technical Sciences, Kiev (1972).Google Scholar
  9. 9.
    A. K. Malmeister, V. P. Tamuzh, and G. A. Teters, Strength of Composite and Polymer Materials [in Russian], 3rd ed., Riga (1980).Google Scholar
  10. 10.
    A. V. Sandalov, V. A. Leit, and M. Z. Medvedev, “Potential for using light transmission for the nondestructive control of reinforced plastics,” Mekh. Polim., No. 3, 563–565 (1975).Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • R. P. Apinis
    • 1
  • S. L. Skalozub
    • 1
  1. 1.Institute of Polymer MechanicsAcademy of Sciences of the Latvian SSRRiga

Personalised recommendations