Skip to main content
Log in

Predicting the fatigue life of woven fiberglass under steady and nonsteady cyclic loading

  • Published:
Mechanics of Composite Materials Aims and scope

Conclusions

  1. 1.

    Analytical expressions describing the kinetics of the damage parameter of the woven fiberglass during its fatigue failure are obtained for any level of steady cyclic load in the 38–70 MPa interval of stress amplitudes.

  2. 2.

    It is established that the critical value of the damage parameter D* in the stress-amplitude interval under consideration is independent of the stress level at which the specimen experiences fatigue failure.

  3. 3.

    Methods of computing the fatigue life of woven fiberglass under a nonsteady cyclic loading are developed.

  4. 4.

    Methods are proposed for the accelerated determination of the fatigue curve of woven fiberglass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. S. V. Serensen, V. P. Kogaev, and R. M. Shneiderovich, Bearing Capacity and Strength Computations of Machine Components [in Russian], Moscow (1975).

  2. Yu. I. Kizima, “Fatigue of woven fiberglass in bending at vibration frequencies of sound,” Candidate's Dissertation, Technical Sciences, Riga (1972).

    Google Scholar 

  3. V. M. Parfeev, “Damage accumulation in certain rigid polymer materials under steady and nonsteady cyclic bending,” Candidate's Dissertation, Technical Sciences, Riga (1978).

    Google Scholar 

  4. P. P. Oldyrev, “Damage accumulation in fiberglass under cyclic tension-compression,” Mekh. Polim., No. 5, 881–885 (1971).

    Google Scholar 

  5. R. P. Apinis and S. L. Skalozub, “Apparatus for the fatigue testing of fiberglass specimens under symmetric tension-compression at the vibration frequencies of sound,” Mekh. Polim., No. 3, 525–528 (1972).

    Google Scholar 

  6. V. S. Kuksenko, L. G. Orlov, and D. I. Frolov, “A concentration criterion for the enlargement of cracks in heterogeneous materials,” in: Failure of Composite Materials [in Russian], Riga (1979), pp. 25–31.

  7. V. P. Tamuzh and V. S. Kuksenko, Fracture Micromechanics of Polymer Materials [in Russian], Riga (1978).

  8. I. M. Vasinyuk, “Interrelation between the extent of damage sustained by cyclically deformable materials and inelasticity characteristics,” Candidate's Dissertation, Technical Sciences, Kiev (1972).

    Google Scholar 

  9. A. K. Malmeister, V. P. Tamuzh, and G. A. Teters, Strength of Composite and Polymer Materials [in Russian], 3rd ed., Riga (1980).

  10. A. V. Sandalov, V. A. Leit, and M. Z. Medvedev, “Potential for using light transmission for the nondestructive control of reinforced plastics,” Mekh. Polim., No. 3, 563–565 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Mekhanika Kompozitnykh Materialov, No. 1, pp. 138–145, January–February, 1983.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Apinis, R.P., Skalozub, S.L. Predicting the fatigue life of woven fiberglass under steady and nonsteady cyclic loading. Mech Compos Mater 19, 118–124 (1983). https://doi.org/10.1007/BF00604038

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00604038

Keywords

Navigation