Skip to main content
Log in

The tritocerebral commissure ‘dwarf’ (TCD): a major GABA-immunoreactive descending interneuron in the locust

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Summary

The minor branch of the tritocerebral commissure of the locust,Locusta migratoria, contains only two axons which are from interneurons in the brain descending to the ventral cord ganglia. The smaller of these two neurons, the tritocerebral commissure dwarf (TCD), is immunoreactive to GABA, suggesting that it may be an inhibitory interneuron. We have exploited the accessibility of its axon in the commissure, first, to fill it with cobalt to define its morphology, and second, to record its input characteristics. It has a cell body and arborization of fine branches in the deutocerebrum of the brain, its axon passes contralateral through the tritocerebral commissure and it forms bilateral arborizations in the suboesophageal and three thoracic ganglia. It receives mechanosensory input from many regions of the ipsilateral body and head, and it is sensitive to illumination levels, generally showing greater spontaneous activity in the dark.

It is one of the largest GABA-immunoreactive descending interneurons in the locust, suggesting it plays a prominent role in behaviour. Since it is easily accessible for physiological recording, its roles in circuits for particular components of behaviour should be amenable to investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altman JS, Kien J (1987) A model for decision making in the insect nervous system. In: Ali MA (ed) Nervous systems in invertebrates. Plenum, NY, pp 621–643

    Google Scholar 

  • Ammermüller J, Weiler R (1985) S-neurons and not L-neurons are the source of GABAergic action on the ocellar retina. J Comp Physiol A 157:779–788

    Google Scholar 

  • Bacon JP, Altman JS (1977) A silver intensification method for cobalt-filled neurons in wholemount preparations. Brain Res 138:359–363

    Google Scholar 

  • Bacon JP, Möhl B (1979) Activity of an identified wind interneurone in a flying locust. Nature 278:638–640

    Google Scholar 

  • Bacon JP, Möhl B (1983) The tritocerebral commissure giant (TCG) wind-sensitive interneurone in the locust. I. Its activity in straight flight. J Comp Physiol 150:439–452

    Google Scholar 

  • Bacon JP, Tyrer NM (1978) The tritocerebral commissure giant (TCG): a bimodal interneurone in the locust,Schistocerca gregaria. J Comp Physiol 126:317–325

    Google Scholar 

  • Bicker G, Schäfer S, Kingan TG (1985) Mushroom body feedback interneurones in the honeybee show GABA-like immunoreactivity. Brain Res 360:394–397

    Google Scholar 

  • Bräunig P, Pflüger HJ, Hustert R (1983) The specificity of central nervous projections of locust mechanoreceptors. J Comp Neurol 218:197–207

    Google Scholar 

  • Burrows M (1980) The control of sets of motoneurons by local interneurones in the locust. J Physiol (Lond) 298:213–233

    Google Scholar 

  • Burrows M (1987) Parallel processing of proprioceptive signals by local interneurones and motor neurones in the locust. J Neurosci 7:1064–1080

    Google Scholar 

  • Burrows M, Pflüger HJ (1986) Processing by local interneurones of mechanosensory signals involved in a leg reflex of the locust. J Neurosci 6:2764–2777

    Google Scholar 

  • Burrows M, Siegler MVS (1976) Transmission without spikes between locust interneurones and motor neurones. Nature 262:222–224

    Google Scholar 

  • Burrows M, Siegler MVS (1982) Spiking local interneurones mediate local reflexes. Science 217:659–662

    Google Scholar 

  • Burrows M, Siegler MVS (1984) The morphological diversity and receptive fields of spiking local interneurons in the locust metathoracic ganglion. J Comp Neurol 224:483–508

    Google Scholar 

  • Burrows M, Watkins BL (1986) Spiking local interneurones in the mesothoracic ganglion of the locust: homologies with metathoracic interneurones. J Comp Neurol 245:29–40

    Google Scholar 

  • Emson PC, Burrows M, Fonnum F (1974) Levels of glutamate decarboxylase, choline acetyltransferase and acetyl choline esterase in identified motor neurones of the locust. J Neurobiol 5:33–42

    Google Scholar 

  • Griss C, Rowell CHF (1986) Three descending interneurons reporting deviation from course in the locust. 1. Anatomy. J Comp Physiol A 158:765–774

    Google Scholar 

  • Hale JP, Burrows M (1985) Innervation patterns of inhibitory motor neurones of the locust. J Exp Biol 117:401–413

    Google Scholar 

  • Hedwig B (1986a) On the role in stridulation of plurisegmental interneurons of the acridid grasshopperOmocestus viridulus L. 1. Anatomy and physiology of descending cephalothoracic interneurons. J Comp Physiol A 158:413–427

    Google Scholar 

  • Hedwig B (1986b) On the role in stridulation of plurisegmental interneurons of the acridid grasshopperOmocestus viridulus L. II. Anatomy and physiology of ascending and T shaped interneurons. J Comp Physiol A 158:429–444

    Google Scholar 

  • Hensler K (1988) Intersegmental interneurons involved in the control of head movements in crickets. J Comp Physiol 162:111–126

    Google Scholar 

  • Horsmann U (1985) Der Einfluß proprioceptiver Windmessung auf den Flug der Wanderheuschrecke und die Bedeutung descendierender Neuronen der Tritocerebralkommissur. PhD thesis, Universität Köln, W. Germany

    Google Scholar 

  • Hoskins SG, Homberg U, Kingan T, Christensen TA, Hildebrand JG (1986) Immunocytochemistry of GABA in the antennal lobes of the sphinx mothManduca sexta. Cell Tissue Res 244:243–252

    Google Scholar 

  • Kien J (1983) The initiation and maintenance of walking in the locust. An alternative to the command concept. Proc R Soc Lond B 219:137–174

    Google Scholar 

  • Kien J, Altman JS (1984) Descending interneurones from the brain and suboesophageal ganglia and their role in the control of locust behaviour. J Insect Physiol 30:59–72

    Google Scholar 

  • Kravitz EA, Kuffler SW, Potter DD (1963) Gamma-aminobutyric acid and other blocking compounds in the Crustacea. III. Their relative concentrations in separated motor and inhibitory axons. J Neurophysiol 26:739–751

    Google Scholar 

  • Laurent G (1986) Thoracic intersegmental interneurones in the locust with mechanosensory inputs from a leg. J Comp Physiol A 159:171–186

    Google Scholar 

  • Laurent G (1987a) The morphology of a population of thoracic intersegmental interneurones in the locust. J Comp Neurol 256:412–429

    Google Scholar 

  • Laurent G (1987b) Parallel effects of joint receptors on motor neurones and intersegmental interneurones in the locust. J Comp Physiol A 160:341–353

    Google Scholar 

  • Laurent G (1988) Local circuits underlying excitation and inhibition of intersegmental interneurones in the locust. J Comp Physiol A 162:145–157

    Google Scholar 

  • Laurent G, Burrows M (1988) Direct excitation of non-spiking local interneurones by exteroreceptors underlies tactile reflexes in the locust. J Comp Physiol A 162:563–572

    Google Scholar 

  • Meyer EP, Matute C, Streit P, Nässle DR (1986) Insect optic lobe neurons identifiable with monoclonal antibodies to GABA. Histochemistry 84:207–216

    Google Scholar 

  • Möhl B, Bacon JP (1983) The tritocerebral commissure giant (TCG) wind sensitive interneurone in the locust. II. Directional sensitivity and role in flight stabilization. J Comp Physiol 150:453–465

    Google Scholar 

  • Nässle DR (1987) Neuroactive substances in the insect CNS. In: Ali MA (ed) Nervous systems in invertebrates. Plenum, NY, pp 171–212

    Google Scholar 

  • Otsuka M, Obata K, Miyata Y, Tanaka Y (1971) Measurement of aminobutyric acid in isolated nerve cells of cat central nervous system. J Neurochem 18:287–295

    Google Scholar 

  • Pearson KG, Robertson RM (1981) Interneurons co-activating hindleg flexor and extensor motoneurons in the locust. J Comp Physiol 144:391–400

    Google Scholar 

  • Robertson RM, Pearson KG (1983) Interneurons in the flight system of the locust: distribution, connections, and resetting properties. J Comp Neurol 215:33–50

    Google Scholar 

  • Römer H, Marquart V (1984) Morphology and physiology of auditory interneurons in the metathoracic ganglion of the locust. J Comp Physiol A 155:249–262

    Google Scholar 

  • Rowell CHF, Reichert H (1986) Three descending interneurons reporting deviation from course in the locust. II. Physiology. J Comp Physiol A 158:775–794

    Google Scholar 

  • Schäfer S, Bicker G (1986) Distribution of GABA-like immunoreactivity in the brain of the honeybee. J Comp Neurol 246:287–300

    Google Scholar 

  • Shepherd D (1984) Some aspects of inhibition in the peripheral and central nervous systems of the locustSchistocerca gregaria. PhD thesis, University of Manchester, UK

    Google Scholar 

  • Siegler MVS, Burrows M (1984) The morphology of two groups of spiking local interneurons in the metathoracic ganglion of the locust. J Comp Neurol 224:463–482

    Google Scholar 

  • Siegler MVS, Burrows M (1986) Receptive fields of motor neurons underlying local tactile reflexes in the locust. J Neurosci 6:507–513

    Google Scholar 

  • Tyrer NM, Altman JS (1974) Motor and sensory flight neurones in a locust demonstrated using cobalt chloride. J Comp Neurol 157:117–138

    Google Scholar 

  • Tyrer NM, Gregory GE (1982) A guide to the neuroanatomy of locust suboesophageal and thoracic ganglia. Phil Trans R Soc Lond Ser B 297:91–123

    Google Scholar 

  • Tyrer NM, Bacon J, Davies CA (1979) Sensory projections from wind-sensitive head hairs of the locustSchistocerca gregaria. Cell Tissue Res 203:79–92

    Google Scholar 

  • Usherwood PNR, Cull-Candy SG (1975) Pharmacology of somatic nerve-muscle synapses. In: Usherwood PNR (ed) Insect muscle. Academic Press, London, pp 207–280

    Google Scholar 

  • Usherwood PNR, Grundfest H (1965) Peripheral inhibition in skeletal muscle of insects. J Neurophysiol 28:497–518

    Google Scholar 

  • Watkins BL, Burrows M, Siegler MVS (1985) The structure of locust nonspiking interneurones in relation to the anatomy of their segmental ganglion. J Comp Neurol 240:233–255

    Google Scholar 

  • Watson AHD (1986) The distribution of GABA-like immunoreactivity in the thoracic nervous system of the locustSchistocerca gregaria. Cell Tissue Res 246:331–341

    Google Scholar 

  • Watson AHD, Burrows M (1985) The distribution of synapses on the two fields of neurites of spiking local interneurones in the locust. J Comp Neurol 240:219–232

    Google Scholar 

  • Watson AHD, Burrows M (1987) Immunocytochemical and pharmacological evidence for GABAergic spiking local interneurons in the locust. J Neurosci 7:1741–1751

    Google Scholar 

  • Watson AHD, Pflüger HJ (1987) The distribution of GABA-like immunoreactivity in relation to ganglion structure in the abdominal nerve cord of the locust. Cell Tissue Res 249:391–402

    Google Scholar 

  • Watson AHD, Burrows M, Hale JP (1985) The morphology and ultrastructure of common inhibitory motor neurones in the thorax of the locust. J Comp Neurol 239:341–359

    Google Scholar 

  • Weis-Fogh T (1949) An aerodynamic sense organ stimulating and regulating flight in locusts. Nature 164:873–874

    Google Scholar 

  • Wohlers D, Huber F (1978) Intracellular recording and staining of cricket auditory interneurones inGryllus campestris andGryllus bimaculatus (de Geer). J Comp Physiol 127:11–28

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tyrer, N.M., Pozza, M.F., Humbel, U. et al. The tritocerebral commissure ‘dwarf’ (TCD): a major GABA-immunoreactive descending interneuron in the locust. J. Comp. Physiol. 164, 141–150 (1988). https://doi.org/10.1007/BF00603946

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00603946

Keywords

Navigation