Skip to main content
Log in

Regional distribution of glucose utilization in the telencephalon of toads in response to configurational visual stimuli: a14C-2DG study

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Summary

The regional glucose utilization in the telencephalon of toadsBufo bufo during stimulation with different visual key stimuli was quantitatively mapped by means of the14C-2DG autoradiographic method: (i) a 4×28 mm2 worm-like stripe (W) eliciting prey catching responses, (ii) a 84×84 mm2 square (S) releasing predator avoidance responses, and (iii) a 28×4 mm2 antiwormlike stripe (A) eliciting no motor response.

Various telencephalic structures changed14C- 2DG uptake statistical significantly during stimulation with the above visual objects in comparison with binocular enucleated animals (brain-to-brain comparison) and in comparison between both hemispheres in monocular animals (interhemispherical comparison): (1) The ventral two-thirds of the posterior half of the medial palliumdecreased 14C-2DG uptake during W- and S-experiments, particularly in response to W. (2) In the posterior two-thirds of the lateral pallium,14C- 2DG uptake wasdecreased in response to the worm-, andincreased in response to the square (S) and antiworm stimuli (A). (3) The ventral striatumincreased uptake of14C-2DG during the animal's response to W- and S-stimuli significantly stronger than in the A-experiment. (4) The dorsal striatum also showed a significant change in14C-2DG uptake which, on a lower level, was not correlated with the type of stimulation experiment.

Various prosencephalic structures are involved in circuitries related to attentional phenomena and the gating of prey catching and predator avoidance behavior. The different functions of these structures are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

anterior dorsal thalamus

ACC :

nucleus ac-cumbens

APL :

amygdala, pars lateralis

APM :

amygdala, pars medialis

aLP :

anterior third of the lateral pallium

aMP :

anterior half of the medial pallium

B :

Bed nucleus of the palliai commissure

Ea :

entopeduncular nucleus, pars anterior

dMP :

dorsal medial pallium

dP :

dorsal pallium

dSTR :

dorsal striatum

La :

lateral thalamic nucleus, anterior division

Lpd :

lateral thalamic nucleus, postero-dorsal division

OT :

optic tectum

P :

posterior thalamic nucleus

pLP :

posterior two-thirds of the lateral pallium

PO :

preoptic area of the hypothalamus;

RET :

tegmental portion of the medial reticular formation

SEP :

medial (MS) and lateral (LS) septum

vMP :

ventral two-thirds of the medial pallium (MP)

vSTR :

ventral striatum

References

  • Blankenagel F (1931) Untersuchungen über die Großhirnfunktionen von R.temporaria. Zool Jahrb 49:271–322

    Google Scholar 

  • Chevalier G, Vacher S, Deniau JM (1984) Inhibitory nigral influence on tectospinal neurons, a possible implication of basal ganglia in orienting behavior. Exp Brain Res 53:320–326

    Google Scholar 

  • Diebschlag E (1935) Zur Kenntnis der Großhirnfunktion einiger Urodelen und Anuren. Z Vergl Physiol 21:343–394

    Google Scholar 

  • Ewert J-P (1967) Untersuchungen über die Anteile zentralnervöser Aktionen an der taxisspezifischen Ermüdung beim Beutefang der Erdkröte (Bufo bufo L.). Z Vergl Physiol 57:263–298

    Google Scholar 

  • Ewert J-P (1968) Der Einfluß von Zwischenhirndefekten auf die Visuomotorik im Beute- und Fluchtverhalten der Erdkröte (Bufo bufo L.). Z Vergl Physiol 61:41–70

    Google Scholar 

  • Ewert J-P (1984) Tectal mechanisms that underlie prey-catching and avoidance behaviors in toads. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum Press, New York, pp 247–399

    Google Scholar 

  • Ewert J-P (1986) Neuroethology: Toward a functional analysis of neural circuitries. In: Ellen P, Thinus-Blanc C (eds) Cognitive processes and spatial orientation. NATO-ASI Proceedings (in press)

  • Finkenstädt T, Ewert J-P (1985) Glucose utilization in the toad's brain during anesthesia and stimulation of the ascending reticular arousal system: A14C-2DG-deoxyglucose study. Naturwissenschaften 72:161

    Google Scholar 

  • Finkenstädt T, Adler NT, Allen TO, Ebbesson SOE, Ewert J-P (1985) Mapping of brain activity in mesencephalic and diencephalic structures of toads during presentation of visual key stimuli: a computer assisted analysis of (14C)2DG autoradiographs. J Comp Physiol A 156:433–445

    Google Scholar 

  • Gallistel CR, Piner CT, Allen TO, Adler NT, Yadin E, Negin M (1982) Computer assisted analysis of 2-DG autoradiographs. Neurosci Biobehav Rev 6:409–422

    Google Scholar 

  • Groves PM, Thompson RF (1970) Habituation: A dual process theory. Psychol Rev 77:419–450

    Google Scholar 

  • Gruberg ER, Ambros VR (1974) A forebrain visual projection in the frog (Rana pipiens). Exp Neurol 44:187–197

    Google Scholar 

  • Grüsser O-J, Grüsser-Cornehls U (1976) Neurophysiology of the anuran visual system. In: Llinás R., Precht W (eds) Frog neurobiology. Springer, Berlin Heidelberg New York, pp 298–385

    Google Scholar 

  • Herrick CJ (1948) The brain of the tiger salamander. University of Chicago Press, Chicago

    Google Scholar 

  • Hore J, Vilis T (1980) Arm movement performance during reversible basal ganglia lesions in the monkey. Exp Brain Res 39:217–228

    Google Scholar 

  • Kicliter E, Northcutt RG (1975) Ascending afferents to the telencephalon of ranid frogs: An anterograde degeneration study. J Comp Neurol 161:239–254

    Google Scholar 

  • Kokoros JJ (1973) Efferent connections of the telencephalon in the toadsBufo marinus, and the tiger salamander,Ambystoma tigrinum. Doctoral thesis, Case Western Reserve University

  • Lettvin JY, Maturana HR, McCulloch WS, Pitts WH (1959) What the frog's eye tells the frog's brain. Proc Inst Radio Eng NY 47:1940–1951

    Google Scholar 

  • Mata M, Fink DJ, Gainer H, Smith CB, Davidsen L, Savaki H, Schwartz WJ, Sokoloff L (1980) Activity-dependent energy metabolism in rat posterior pituitary primarily reflects sodium pump activity. J Neurochem 34:213–215

    Google Scholar 

  • Mudry KM, Capranica RR (1980) Evoked auditory activity within the telencephalon of the bullfrog (Rana catesbeiana). Brain Res 182:303–311

    Google Scholar 

  • Neary TJ, Wilczynski W (1980) Descending inputs to the optic tectum in ranid frogs. Soc Neurosci Abstr 6:629

    Google Scholar 

  • Northcutt RG (1970) Pallial projection of sciatic, ulnar, and mandibular branch of the trigeminal afferents in the frog (Rana catesbeiana). Anat Rec 166:356

    Google Scholar 

  • Northcutt RG (1974) Some histological observations on the telencephalon of the bullfrog,Rana catesbeiana. J Comp Neuroll 57:379–390

    Google Scholar 

  • Northcutt RG, Kicliter E (1980) Organization of the amphibian telencephalon. In: Ebbesson SOE (ed) Comparative neurology of the telencephalon. Plenum Press, New York, pp 203–255

    Google Scholar 

  • Northcutt RG, Royce GJ (1975) Olfactory bulb projections in the bullfrogRana catesbeiana. J Morphol 145:51–268

    Google Scholar 

  • Rizzolatti G (1981) Mechanisms of selective attention in mammals. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. NATO-AS1 Series. Plenum Press, New York, pp 261–297

    Google Scholar 

  • Shinn EA, Dole JW (1978) Evidence for a role for olfactory cues in the feeding response of leopard frogs,Rana pipiens. Herpetologia 34:167–172

    Google Scholar 

  • Sokoloff L, Reivich M, Kennedy C, DesRosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M (1977) The (14C)-deoxyglucose method for the measurement of local cerebral glucose utilization: Theory, procedure and normal values in the conscious and anesthetized albino rat. J Neurochem 28:897–916

    Google Scholar 

  • Supin AY, Guse L'Nikov VI (1964) Representation of visual, auditory and somatosensory systems in frog forebrain. Fiziol Zh (Mosk) 50:426–434

    Google Scholar 

  • Theurich M, Müller ChM, Scheich H (1984) 2-Deoxyglucose accumulation parallels extracellularly recorded spike activity in the avian auditory neostriatum. Brain Res 322:157–161

    Google Scholar 

  • Wilczynski W, Northcutt RG (1983a) Connections of the bullfrog striatum: Afferent organization. J Comp Neurol 214:321–332

    Google Scholar 

  • Wilczynski W, Northcutt RG (1983b) Connections of the bullfrog striatum: Efferent projections. J Comp Neurol 214:333–342

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Finkenstädt, T., Adler, N.T., Allen, T.O. et al. Regional distribution of glucose utilization in the telencephalon of toads in response to configurational visual stimuli: a14C-2DG study. J. Comp. Physiol. 158, 457–467 (1986). https://doi.org/10.1007/BF00603792

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00603792

Keywords

Navigation