Skip to main content
Log in

The initial oxidation of iron at 200° and 300° C and the effect of surface sulfur

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The growth of thin (0–200 Å) oxide films on iron at 200 and 300 °C has been studied as a function of time and oxygen partial pressure using proton-induced X-ray emission (PIXE) and Auger electron spectroscopy (AES). Oxidation was found to be initially retarded by sulfur which had segregated onto the iron surfaces during preoxidation annealing, but only if the iron surface contained the maximum or near-maximum sulfur coverage (ca. one-half monolayer). During and immediately following the oxygen-sulfur interaction, oxide buildup appeared to be limited by a surface reaction (adsorption, ionization, or dissociation). For most of the oxidation period, pressure-dependent logarithmic oxide growth was observed at 200°C, and pressure-independent parabolic oxide growth at 300°C. Interpretation of the data indicated that oxide growth at 200°C may be limited by quantum mechanical tunneling of electronic species through the previously formed oxide film, and oxide growth at 300°C may be limited by ionic diffusion through the previously formed oxide film. Comparison of AES and PIXE data indicated that the oxide films formed at 200°C were uniform in thickness over the surface of the metal, whereas films formed at 300°C had relatively thin areas where sulfur had remained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. E. Boggs, R. H. Kachik, and G. E. Pellissier,J. Electrochem Soc. 112, 539 (1965).

    Google Scholar 

  2. P. B. Sewell and M. Cohen,J. Electrochem. Soc. 111, 501 (1964).

    Google Scholar 

  3. P. B. Sewell and M. Cohen,J. Electrochem. Soc. 111, 508 (1964).

    Google Scholar 

  4. P. B. Sewell, D. F. Mitchell, and M. Cohen,Surf. Sci. 33, 535 (1972).

    Google Scholar 

  5. A. G. Goursat and W. W. Smeltzer,J. Electrochem. Soc. 120, 390 (1973).

    Google Scholar 

  6. R. J. Hussey and M. Cohen,Corros. Sci. 11, 699 (1971).

    Google Scholar 

  7. R. J. Hussey and M. Cohen,Corros. Sci. 11, 713 (1971).

    Google Scholar 

  8. E. J. Caule, K. H. Buob, and M. Cohen,J. Electrochem. Soc. 108, 829 (1961).

    Google Scholar 

  9. D. E. Davies, U. R. Evans, and J. N. Agar,Proc. R. Soc. 224, 443 (1954).

    Google Scholar 

  10. M. J. Graham and M. Cohen,J. Electrochem. Soc. 116, 1430 (1969).

    Google Scholar 

  11. Z. Szklarska-Smialowska and J. Jurek,Corrosion 32, 294 (1976).

    Google Scholar 

  12. N. Cabrera and N. F. Mott,Rep. Prog. Phys. 12, 163 (1949).

    Google Scholar 

  13. A. T. Fromhold, Jr. and E. L. Cook,Phys. Rev. 175, 877 (1968).

    Google Scholar 

  14. M. J. Graham, S. I. Ali, and M. Cohen,J. Electrochem. Soc. 117, 513 (1970).

    Google Scholar 

  15. A. M. Morgan and D. A. King,Surf. Sci. 23, 259 (1970).

    Google Scholar 

  16. J. Kruger, and H. T. Yolken,Corrosion 20, 29t (1964).

    Google Scholar 

  17. D. J. Young and M. J. Dignam,Oxid. Met. 5, 241 (1972).

    Google Scholar 

  18. C. F. Brucker and T. N. Rhodin,Surf. Sci. 57, 523 (1976).

    Google Scholar 

  19. G. W. Simmons and D. J. Dwyer,Surf. Sci. 48, 373 (1975).

    Google Scholar 

  20. A. J. Melmed and J. J. Carroll,J. Vac. Sci. Technol. 10, 164 (1972).

    Google Scholar 

  21. A. J. Pignocco and G. E. Pellissier,Surf. Sci. 7, 261 (1967).

    Google Scholar 

  22. J. M. Khan, D. L. Potter, and R. D. Worley,J. Appl. Phys. 37, 564 (1966).

    Google Scholar 

  23. R. R. Hart, F. W. Reuter III, H. P. Smith, and J. M. Khan,Phys. Rev. 179, 4 (1969).

    Google Scholar 

  24. G. C. Allen, I. T. Brown, and R. K. Wild,Oxid. Met. 12, 83 (1978).

    Google Scholar 

  25. K. Ueda and R. Shimizu,Surf. Sci. 43, 77 (1974).

    Google Scholar 

  26. W. E. Boggs, R. H. Kachik, and G. E. Pellissier,J. Electrochem. Soc. 114, 32 (1967).

    Google Scholar 

  27. N. Ramasubramanian, P. B. Sewell, and M. Cohen,J. Electrochem. Soc. 115, 12 (1968).

    Google Scholar 

  28. F. P. Fehlner and N. F. Mott,Oxid. Met. 2, 59 (1970).

    Google Scholar 

  29. I. M. Ritchie and G. L. Hunt,Surf. Sci. 15, 524 (1969).

    Google Scholar 

  30. R. Ghez,J. Chem. Phys. 58, 1838 (1973).

    Google Scholar 

  31. T. B. Grimley and B. M. W. Trapnell,Proc. R. Soc. A 234, 405 (1956).

    Google Scholar 

  32. A. T. Fromhold, Jr.,J. Phys. Chem. Solids 24, 1309 (1963).

    Google Scholar 

  33. N. F. Mott,Trans. Faraday Soc. 39, 472 (1940).

    Google Scholar 

  34. A. T. Fromhold, Jr. and E. L. Cook,Phys. Rev. 158, 600 (1967).

    Google Scholar 

  35. E. J. W. Verwey and P. W. Haayman,Physica 8, 979 (1941).

    Google Scholar 

  36. D. S. Tannhauser,J. Phys. Chem. Solids 23, 25 (1962).

    Google Scholar 

  37. A. T. Fromhold, Jr. and E. L. Cook,Phys. Rev. 163, 650 (1967).

    Google Scholar 

  38. K. F. Young and H. P. R. Frederikse,J. Phys. Chem. Ref. Data 2, 313 (1973).

    Google Scholar 

  39. Handbook of Chemistry and Physics, 44th ed. (CRC Press, Cleveland, 1963) pp. 2276–2280.

  40. Handbook of Materials Science, Vol. III,Nonmetallic Materials and Applications, C. T. Lynch ed. (CRC Press, Cleveland, 1975), pp. 123–126.

    Google Scholar 

  41. C. J. Powell,Surf. Sci. 44, 29 (1974).

    Google Scholar 

  42. R. K. Wild,Corros. Sci. 17, 87 (1977).

    Google Scholar 

  43. J. Crank,The Mathematics of Diffusion (Oxford, Oxford, 1957), p 31, Eq. (3.15).

    Google Scholar 

  44. S. J. Wang and H. J. Grabke,Z. Metals 61, 597 (1970).

    Google Scholar 

  45. M. Aucouturier and M. Suzuki,Trans. Iron Steel Inst. Japan 7, 191 (1967).

    Google Scholar 

  46. W. E. Swartz, Jr. and D. M. Holloway,Appl. Spectrosc. 31, 210 (1977).

    Google Scholar 

  47. C. Leygraf and S. Ekelund,Surf. Sci. 40, 609 (1973).

    Google Scholar 

  48. T. J. Driscoll and P. B. Needham, Jr.,Oxid. Met. 13, 283 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Driscoll, T.J. The initial oxidation of iron at 200° and 300° C and the effect of surface sulfur. Oxid Met 16, 107–131 (1981). https://doi.org/10.1007/BF00603747

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00603747

Key words

Navigation