Skip to main content
Log in

The development of the static vestibulo-ocular reflex in the Southern Clawed Toad,Xenopus laevis

III. Chronic hemilabyrinthectomized tadpoles

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Summary

The static vestibulo-ocular reflex was investigated in tadpoles at different times following unilateral destruction of the labyrinth during the period of early organogenesis and premetamorphosis. Balance compensation is completed after a few weeks, while gain compensation only occurs partially (Figs. 2–4). Tadpoles hemilabyrinthectomized in the age of 2.5 days (stage 38) develop no vestibular nuclei on their lesioned side, while tadpoles operated later in their life, possess these nuclei (Figs. 5, 6) even if they were not detectable at the operation day (Fig. 7). For their dorsal vestibular nucleus (DVN), the number of neurons is usually larger on the intact than on the lesioned side; while for the ventral vestibular nucleus (VVN), there is either numerical symmetry or a transient decrease of cell number on the intact side (Fig. 5).

The results demonstrate that vestibular compensation occurs even if vestibular nuclei have developed only on one side, i.e. the vestibular commissure is not a prerequisite for a successful compensation process. It is discussed whether the use of extra-vestibular error signals for balance but not for gain compensation may cause the differences in time courses of both compensation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

α :

eye angle

γ :

roll angle

α(γ) :

response characteristic

A :

response amplitude

G :

response gain

VOR :

vestibuloocular reflex

VVN :

ventral vestibular nucleus

DVN :

dorsal vestibular nucleus

References

  • Agosti R, Dieringer N, Precht W (1986) Partial restitution of lesion-induced deficits in the horizontal vestibulo-ocular reflex performance measured from the bilateral abducens motor output in frogs. Exp Brain Res 61:291–302

    Google Scholar 

  • Bienhold H, Flohr H (1978) Role of commissural connections between vestibular nuclei in compensation following unilateral labyrinthectomy. J Physiol (Lond) 284:178

    Google Scholar 

  • Blanks RHI, Precht W, Giretti ML (1977) Response characteristics and vestibular receptor convergence of frog cerebellar Purkinje cells. A natural stimulation study. Exp Brain Res 27:181–201

    Google Scholar 

  • Cohen B (1974) The vestibulo-ocular reflex arc. In: Kornhuber HH (ed) The vestibular system. Part 1: Basic mechanisms. (Handbook of sensory physiology, vol VI/1) Springer, Berlin Heidelberg New York, pp 477–540

    Google Scholar 

  • Dieringer N, Precht W (1979a) Mechanisms of compensation for vestibular deficits in the frog. I. Modification of the excitatory commissural system. Exp Brain Res 36:311–328

    Google Scholar 

  • Dieringer N, Precht W (1979b) Mechanisms of compensation for vestibular deficits in the frog. II. Modification of the inhibitory pathways. Exp Brain Res 36:329–341

    Google Scholar 

  • Flohr H, Bienhold H, Abeln W, Macskovics I (1981) Concepts of vestibular compensation. In: Flohr H, Precht W (eds) Lesion-induced neuronal plasticity in sensorimotor systems. Springer, Berlin Heidelberg New York, pp 153–172

    Google Scholar 

  • Föller W, Horn E (1986) Functional regeneration of the cereal gravity receptor of crickets,Gryllus bimaculatus. Verb Dtsch Zool Ges 79

  • Galiana HL, Flohr H, Melvill Jones G (1984) A reevaluation of intervestibular nuclear coupling: its role in vestibular compensation. J Neurophysiol 51:242–259

    Google Scholar 

  • Hess BJM, Knöpfel T, Precht W (1984) Dynamics of maculoocular reflexes in the frog. Neuroscience 11:645–650

    Google Scholar 

  • Horn E, Rayer B (1978) Compensation of vestibular lesions in relation to development. Naturwissenschaften 65:441

    Google Scholar 

  • Horn E, Lang HG, Rayer B (1986a) The development of the static vestibulo-ocular reflex in the Southern Clawed Toad,Xenopus laevis. I. Intact animals. J Comp Physiol A 159:869–878

    Google Scholar 

  • Horn E, Mack R, Lang HG (1986b) The development of the static vestibulo-ocular reflex in the Southern Clawed Toad,Xenopus laevis. II. Animals with acute vestibular lesions. J Comp Physiol A 159:879–885

    Google Scholar 

  • Kidokoro M (1968) Direct inhibitory innervation of teleost oculomotor neurones by cerebellar Purkinje cells. Brain Res 10:453–456

    Google Scholar 

  • Knöpfel T, Hess BJM, Precht W (1984) Responses of frog trochlear motoneurons to linear acceleration. J Comp Physiol A 154:233–240

    Google Scholar 

  • Llinás R (1976) Cerebellar physiology. In: Llinás R, Precht W (eds) Frog neurobiology. Springer, Berlin Heidelberg New York, pp 892–923

    Google Scholar 

  • Maioli C, Precht W, Ried S (1983) Short- and long-term modifications of vestibulo-ocular response dynamics following unilateral vestibular nerve lesions in the cat. Exp Brain Res 50:259–274

    Google Scholar 

  • Nieuwkoop PD, Faber J (1975) Normal table ofXenopus laevis (Daudin). Hubrecht Laboratory, Utrecht

    Google Scholar 

  • Paterson NF (1948) The development of the inner ear ofXenopus laevis. Zool Soc (Lond) 119:269–291

    Google Scholar 

  • Precht W (1976) Physiology of the peripheral and central vestibular system. In: Llinás R, Precht W (eds) Frog neurobiology. Springer, Berlin Heidelberg New York, pp 481–512

    Google Scholar 

  • Precht W, Richter A, Ozawa S, Shimazu H (1974) Intracellular study of frog's vestibular neurons in relation to the labyrinth and spinal cord. Exp Brain Res 19:377–393

    Google Scholar 

  • Rayer B, Cagol E, Horn E (1983) Compensation of vestibular induced deficits in relation to the development of the Southern Clawed Toad,Xenopus laevis Daudin. J Comp Physiol 151:487–498

    Google Scholar 

  • Romeis B (1968) Mikroskopische Technik. Oldenburg, München Wien

    Google Scholar 

  • Sachs L (1974) Angewandte Statistik. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Schaefer KP, Meyer DL (1973) Compensatory mechanisms following labyrinthine lesion in the guinea-pig. A simple model of learning. In: Zippel HP (ed) Memory and transfer of information. Plenum Press, New York, pp 203–232

    Google Scholar 

  • Schaefer KP, Meyer DL (1974) Compensation of vestibular lesions. In: Kornhuber HH (ed) Vestibular system, part 2, Psychophysics, applied aspects and general interpretations. (Handbook of sensory physiology, vol VI/2) Springer, Berlin Heidelberg New York, pp 463–491

    Google Scholar 

  • Sotelo C (1976) Morphology of cerebellar cortex. In: Llinás R, Precht W (eds) Frog neurobiology. Springer, Berlin Heidelberg New York, pp 864–891

    Google Scholar 

  • Wallman J, Velez J, Weinstein B, Green AE (1982) Avian vestibuloocular reflex: adaptive plasticity and developmental changes. J Neurophysiol 48:952–967

    Google Scholar 

  • Will U, Luhede G, Görner P (1985a) The area octavo-lateralis inXenopus laevis. I. The primary afferent projections. Cell Tissue Res 239:147–161

    Google Scholar 

  • Will U, Luhede G, Görner P (1985b) The area octavo-lateralis inXenopus laevis. II. Second order projections and cytoarchitecture. Cell Tissue Res 239:163–175

    Google Scholar 

  • Windle WF (1970) Development of neural elements in human embryos of four to seven weeks gestation. Exp Neurol [Suppl] 5:44–83

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rayer, B., Horn, E. The development of the static vestibulo-ocular reflex in the Southern Clawed Toad,Xenopus laevis . J. Comp. Physiol. 159, 887–895 (1986). https://doi.org/10.1007/BF00603742

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00603742

Keywords

Navigation