Skip to main content
Log in

Stratified oxide scale growth on two Cr-Ni steels oxidized in high-pressure steam at 800°C

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

A commercial 18% Cr-11% Ni steel and a laboratory-made 21% Cr-11% Ni alloy have been oxidized in steam at 50 atm pressure and with approximately 0.2 ppm O2 at 800°C for 50–1000 hr. The oxide scales have been studied by optical microscopy, replica electron microscopy, x-ray, and selected-area-electron diffraction and microprobe analysis. The diffusion processes have been studied by gold markers and autoradiography by means of the reaction18O (p, n)18F. On both materials internal oxidation in combination with external scale formation is observed. The interface between the external scale and the inner internally oxidized scale coincides very closely with the original metal surface. The oxide phases present have been identified. The scale is of fairly even thickness on the 21% Cr-11% Ni alloy and grows by a cubic rate law. The scale on the commercial steel is of very irregular thickness; areas with protective Cr-oxide alternate with areas of the above-mentioned structure, so-called nodules. The zones of internal oxidation in the nodules are frequently intersected by bands of compact oxide. The growth mechanism of the nodules is discussed in terms of the theory for internal oxidation. The reason for the beneficial effect of increased Ni content with constant Cr content is discussed briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Eberle and C. H. Anderson,J. Eng. Power Trans. ASME 84, 223 (1962).

    Google Scholar 

  2. W. E. Ruther and S. Greenberg,J. Electrochem. Soc. 111, 1116 (1964).

    Google Scholar 

  3. G. P. Wozaldo and W. L. Pearl,Corrosion 21, 355 (1965).

    Google Scholar 

  4. M. J.-Ph. Berge,European Coal and Steel Community IV Congress (1968).

  5. S. Jansson, W. Hübner, G. Östberg, and M. de Pourbaix,Brit. Corrosion J. 4, 21 (1969).

    Google Scholar 

  6. J. C. Bokros and W. P. Wallace,Corrosion 16, 73A (1960).

    Google Scholar 

  7. H. T. Daniel, J. E. Antill, and K. A. Peakall,J. Iron Steel Inst. 201, 154 (1963).

    Google Scholar 

  8. H. E. McCoy,Corrosion 21, 84 (1965).

    Google Scholar 

  9. H. Loriers, D. Leclercq, and R. Darras,Mem. Sci. Rev. Met. 60, 177 (1963).

    Google Scholar 

  10. D. Caplan and M. Cohen,Corrosion 15, 141A (1959).

    Google Scholar 

  11. J. Decroix,Appl. Mater. Res. 3, 35 (1964).

    Google Scholar 

  12. G. C. Wood and M. G. Hobby,J. Iron Steel Inst. 203, 54 (1965).

    Google Scholar 

  13. G. C. Wood, M. G. Hobby, and B. Vaszko,J. Iron Steel Inst. 202, 685 (1964).

    Google Scholar 

  14. D. Lai, R. J. Borg, M. J. Brabers, J. D. Mackenzie, and C. E. Birchenall,Corrosion 17, 357 t (1961).

    Google Scholar 

  15. G. C. Wood and D. P. Whittle,Corrosion Sci. 7, 763 (1967).

    Google Scholar 

  16. W. Hubner,5th Scandinavian Corrosion Congress (Copenhagen, 1968).

  17. T. Ericsson,4th International Congress on Metallic Corr. (Amsterdam, 1969).

  18. M. Warzee, J. Hennaut, M. Maurice, C. Sonnen, and J. Waty,J. Electrochem. Soc. 112, 670 (1965).

    Google Scholar 

  19. J. Philibert,X-Ray Optics and Microanalysis (Academic Press, New York, 1963), p. 379.

    Google Scholar 

  20. S. J. B. Reed,Brit. J. Appl. Phys. 16, 913 (1965).

    Google Scholar 

  21. K. F. J. Heinrich,The Electron Microprobe (Wiley, New York, 1966).

    Google Scholar 

  22. R. H. Condit and J. B. Holt,J. Electrochem. Soc. 111, 1192 (1964).

    Google Scholar 

  23. W. B. Pearson,Handbook of Lattice Spacings and Structures of Metals and Alloys (Pergamon Press, New York, 1958).

    Google Scholar 

  24. R. K. Di Cerbo and A. U. Seybolt,J. Am. Ceram. Soc. 42, 430 (1959).

    Google Scholar 

  25. H. J. Yearian, J. M. Kortright, and R. H. Langenheim,J. Chem. Phys. 22, 1196 (1954).

    Google Scholar 

  26. J. M. Francis,Brit. Corrosion J. 3, 113 (1968).

    Google Scholar 

  27. J. Paidassi and J. Lopez,Mem. Sci. Rev. Met. 58, 677 (1961).

    Google Scholar 

  28. A. U. Seybolt,J. Electrochem. Soc. 107, 147 (1960).

    Google Scholar 

  29. O. Kubaschewski and E. Ll. Evans,Metallurgical Thermochemistry (Pergamon Press, New York, 1958).

    Google Scholar 

  30. J. D. Tretjakow and H. Schmalzried,Ber. Bunsenges. Physik. Chem. 69, 396 (1965).

    Google Scholar 

  31. D. P. Whittle, G. C. Wood, D. J. Evans, and D. B. Scully,Acta Met. 15, 1747 (1967).

    Google Scholar 

  32. J. E. Castle and P. L. Surman,J. Phys. Chem. 73, 632 (1969).

    Google Scholar 

  33. J. I. Goldstein, R. E. Hanneman, and R. E. Ogilvie,Trans. AIME 233, 812 (1965).

    Google Scholar 

  34. K. Hauffe,Oxidation of Metals (Plenum Press, New York, 1965).

    Google Scholar 

  35. C. T. Fujii and R. A. Meussner,J. Electrochem. Soc. 110, 1195 (1963).

    Google Scholar 

  36. C. T. Fujii and R. A. Meussner,J. Electrochem. Soc. 111, 1215 (1964).

    Google Scholar 

  37. P. K. Kofstad and A. Z. Hed,J. Electrochem. Soc. 116, 224 (1969).

    Google Scholar 

  38. Y. Adda and J. Philibert,La Diffusion dans les Solides II (Presse Univ. de France, 1966).

  39. C. Wagner,Z. Elektrochem. 63, 772 (1959).

    Google Scholar 

  40. L. B. Pfeil,J. Iron Steel Inst. 119, 501 (1929).

    Google Scholar 

  41. K. Sachs,Metallurgia 54, 11 (1956).

    Google Scholar 

  42. R. A. Rapp,Corrosion 21, 382 (1965).

    Google Scholar 

  43. G. C. Wood,Corrosion Sci. 2, 173 (1961).

    Google Scholar 

  44. T. Ericsson, L-G. Liljestrand, S. Sehlstedt, and H. Sterner (submitted toJ. Iron Steel Inst.).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ericsson, T. Stratified oxide scale growth on two Cr-Ni steels oxidized in high-pressure steam at 800°C. Oxid Met 2, 173–205 (1970). https://doi.org/10.1007/BF00603656

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00603656

Keywords

Navigation