Skip to main content
Log in

Modification in the Microstructure of Mod. 9Cr-1Mo Ferritic Martensitic Steel Exposed to Sodium

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Mod. 9Cr-1Mo is used as the structural material in the steam generator circuit of liquid metal-cooled fast breeder reactors. Microstructural modifications on the surface of this steel are investigated after exposing to flowing sodium at a temperature of 798 K (525 °C) for 16000 hours. Sodium exposure results in the carburization of the ferritic steel up to a depth of ~218 µm from the surface. Electron microprobe analysis revealed the existence of two separate zones with appreciable difference in microchemistry within the carburized layer. Differences in the type, morphology, volume fraction, and microchemistry of the carbides present in the two zones are investigated using analytical transmission electron microscopy. Formation of separate zones within the carburized layer is understood as a combined effect of leaching, diffusion of the alloying elements, and thermal aging. Chromium concentration on the surface in the α-phase suggested possible degradation in the corrosion resistance of the steel. Further, concentration-dependent diffusivities for carbon are determined in the base material and carburized zones using Hall’s and den Broeder’s methods, respectively. These are given as inputs for simulating the concentration profiles for carbon using numerical computation technique based on finite difference method. Predicted thickness of the carburized zone agrees reasonably well with that of experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. B. Raj, S.L. Mannan, P.R. Vasudeva Rao and M.D. Mathew: Sadhana, 2002, vol. 27(5), pp. 527-58.

    Article  Google Scholar 

  2. N. Sivai Bharasi, K. Thyagarajan, H. Shaikh, M. Radhika, A.K. Balamurugan, S. Venugopal, A. Moitra, S. Kalavathy, S. Chandramouli, A.K. Tyagi, R.K. Dayal and K.K. Rajan: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 561–71.

    Article  Google Scholar 

  3. H. Shaikh, N. Sivai Bharasi, S. Rajendran Pillai, and H.S. Khatak: Proc. Materials R & D for PFBR, IGCAR, Kalpakkam, 2003, pp. 169–78.

  4. K. Natesan, M. Li, O.K. Chopra and S. Majumdar: J. Nucl. Mater., 2009, vol. 392, pp. 243-48.

    Article  Google Scholar 

  5. O.K. Chopra: J. Nucl. Mater., 1983, vol. 115, pp. 223-38.

    Article  Google Scholar 

  6. R.L. Klueh: J. Nucl. Mater., 1981, vol. 96, pp. 187-95.

    Article  Google Scholar 

  7. R. Kannan, R. Sandhya, V. Ganesan, M. Valsan and K. Bhanu Sankara Rao: J. Nucl. Mater., 2009, vol. 384, pp. 286-91.

    Article  Google Scholar 

  8. D.L. Lopez, A.W. Moreno and L. Martinez: Corros. Sci., 1993, vol. 35(5-8), pp. 1151-58.

    Article  Google Scholar 

  9. H.U. Borgstedt: J. Nucl. Mater., 2003, vol. 317, pp. 160-66.

    Article  Google Scholar 

  10. R.B. Snyder, K. Natesan and T.F. Kassner: J. Nucl. Mater., 1974, vol. 50, pp. 259-74.

    Article  Google Scholar 

  11. N. Sivai Bharasi, K. Thyagarajan, H. Shaikh, A.K. Balamurugan, S. Bera, S. Kalavathy, K. Gurumurthy, A.K. Tyagi, R.K. Dayal, K.K. Rajan and H.S. Khatak: J. Nucl. Mater., 2008, vol. 377, pp. 378-84.

    Article  Google Scholar 

  12. C. Sudha, N. Sivai Bharasi, R. Anand, H. Shaikh, R.K. Dayal and M. Vijayalakshmi: J. Nucl. Mater., 2010, vol. 402, pp. 186-95.

    Article  Google Scholar 

  13. A. Saltelli, O.K. Chopra and K. Natesan: J. Nucl. Mater., 1982, vol. 110, pp. 1-10.

    Article  Google Scholar 

  14. T. Suzuki and I. Mutoh: J. Nucl. Mater., 1987, vol. 149, pp. 41-50.

    Article  Google Scholar 

  15. K. Matsumoto, Y. Ohta, T. Kataoka, S. Yagi and K. Suzuki: J. Nucl. Sci. Technol., 1976, vol. 13(4), pp. 199-214.

    Article  Google Scholar 

  16. R.L. Klueh and J.M. Leitnaker: Metall. Trans. A, 1975, vol. 6A, pp. 2089-93.

    Article  Google Scholar 

  17. K. Natesan and T.F. Kassner: J. Nucl. Mater., 1970, vol. 37, pp. 223-35.

    Article  Google Scholar 

  18. K. Natesan, O.K. Chopra and T.F. Kassner: Nucl. Technol., 1976, vol. 28, pp. 441-51.

    Google Scholar 

  19. J.L. Krankota and J.S. Armijo: Nucl. Technol., 1974, vol. 24, pp. 225-33.

    Google Scholar 

  20. D. Farkas and J. Delgado: Scripta Metall., 1983, vol. 17, pp. 261-64.

    Article  Google Scholar 

  21. K. Bongartz, D.F. Lupton and H. Schuster: Metall. Trans. A, 1980, vol. 11A, pp. 1883-93.

    Article  Google Scholar 

  22. K. Bongartz, W.J. Quadakkers, R. Schulten and H. Nickel: Metall. Trans. A, 1989, vol. 20A, pp. 1021-28.

    Article  Google Scholar 

  23. A. Engstrom, L. Hoglund and J. Agren: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 1127-34.

    Article  Google Scholar 

  24. S. Rajan Babu, P.R. Reshmi and T. Gnanasekaran: Electrochim. Acta, 2012, vol. 59, pp. 522-30.

    Article  Google Scholar 

  25. S. Rajendran Pillai and C.K. Mathews: J. Nucl. Mater., 1986, vol. 137, pp. 107-14.

    Article  Google Scholar 

  26. C. Sudha, R. Anand, S. Saroja and M. Vijayalakshmi: Trans. IIM, 2010, vol. 63(4), pp. 739-44.

    Google Scholar 

  27. G. Cliff and G.W. Lorimer: Quantitative Microanalysis with High Spatial Resolution, The Metal Society, London, 1981.

    Google Scholar 

  28. F.J.A. den Broeder: Scripta Metall., 1969, vol. 3, pp. 321-26.

    Article  Google Scholar 

  29. S.K. Kailasam, J.C. Lacombe and M.E. Glicksman: Metall. Mater. Trans. A., 1999, vol. 30A, pp. 2605-10.

    Article  Google Scholar 

  30. Lewis D. Hall: J. Chem. Phy., 1953, vol. 21, pp. 87–89.

  31. R. Anand, C. Sudha, T. Karthikeyan, A.L.E. Terrance, S. Saroja and M. Vijayalakshmi: J. Mater. Sci., 2009, vol. 44, pp. 257-65.

    Article  Google Scholar 

  32. J.I. Goldstein and A.E. Moren: Metall. Trans. A, 1978, vol. 9(11), pp. 1515-25.

    Article  Google Scholar 

  33. F.B. Litton and A.E. Morris: J. Less Common Met., 1970, vol. 22, pp. 71-80.

    Article  Google Scholar 

  34. J. Kucera, K. Stransky and J. Dojiva: Mater. Sci. Eng. A, 1990, vol. 125, pp. 75-82.

    Article  Google Scholar 

  35. H. Wada: Metall. Trans. A, 1986, vol. 16A, pp. 1479–90.

  36. V. Thomas Paul, S. Saroja and M. Vijayalakshmi: J. Nucl. Mater., 2008, vol. 378, pp. 273-81.

    Article  Google Scholar 

  37. C. Sudha, V. Thomas Paul, A.L.E. Terrance, S. Saroja and M. Vijayalakshmi: Weld. J., 2006, vol. 85(3), pp. 71s-80s.

    Google Scholar 

  38. K. Kaneko, S. Matsumura, A. Sadakata, K. Fujita, W.J. Moon, S. Ozaki, N. Nishimura and Y. Tomokiyo: Mater. Sci. Eng. A, 2004, vol. 374, pp. 82-89.

    Article  Google Scholar 

  39. S. Saroja, P. Parameswaran, M. Vijayalakshmi and V.S. Raghunathan: Acta Metall. Mater., 1995, vol. 43(8), pp. 2985-3000.

    Article  Google Scholar 

  40. O.K. Chopra, K. Natesan and T.F. Kassner: J. Nucl. Mater., 1981, vol. 96, pp. 269-84.

    Article  Google Scholar 

  41. C.K. Mathews, T. Gnanasekaran and S. Rajendran Pillai: Trans. Indian Inst. Met., 1987, vol. 40(1), pp. 89-100.

    Google Scholar 

  42. A. Vyrostkova, A. Kroupa, J. Janovec and M. Svoboda: Acta Metall., 1998, vol. 46(1), pp. 31-38.

    Google Scholar 

  43. P.L.F. Rademakers and B.H. Kolster: J. Nucl. Mater., 1981, vol. 97, pp. 309-18.

    Article  Google Scholar 

  44. T. Furukawa and E. Yashida: Comprehensive Nuclear Materials, R.J.M. Konings, ed., Elsevier, Oxford, 2012, pp. 327–41.

  45. W.Z. Guang, K. Rahka, P. Nenonen and C. Laird: Acta Metall., 1985, vol. 33(12), pp. 2129-41.

    Article  Google Scholar 

  46. R. Viswanathan and A. Joshi: Metall. Trans. A, 1975, vol. 6A, pp. 2289-97.

    Google Scholar 

  47. B.A. Senior: Mater. Sci. Engg. A, 1988, vol. A103, pp. 263-71.

    Article  Google Scholar 

Download references

Acknowledgement

The authors thank Dr. P.R. Vasudeva Rao, Director IGCAR and Dr. T. Jayakumar, Director, Metallurgy and Materials Group, IGCAR for their encouragement and support throughout the period of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheruvathur Sudha.

Additional information

Manuscript submitted June 19, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasanthi, T.N., Sudha, C., Paul, V.T. et al. Modification in the Microstructure of Mod. 9Cr-1Mo Ferritic Martensitic Steel Exposed to Sodium. Metall Mater Trans A 45, 4220–4234 (2014). https://doi.org/10.1007/s11661-014-2361-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2361-7

Keywords

Navigation