Skip to main content
Log in

Routes and stations in the processing of auditory directional information in the CNS of a grasshopper, as revealed by surgical experiments

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Summary

Male grasshoppers of the acridid speciesChorthippus biguttulus respond to conspecific female song by turning abruptly toward the sound source and then singing themselves. The orienting response requires that (i) the male recognizes the female song and (ii) determines the location of its source. By observing the effects of various forms of surgical interference (cutting connectives, splitting ganglia, destruction of a tympanal organ) on the subsequent behavior, we were able to narrow down the paths of information flow necessary for these abilities and to make an estimate of the contributions of individual ganglia to the evaluation of sound direction.

  1. 1.

    The information from a single tympanal organ is sufficient for therecognition of the conspecific song. From the metathoracic ganglion (TG3) sufficient information for song recognition ascends both in the ipsilateral and in the contralateral connective chain. Thus, information for song recognition is transmitted to the opposite side within the metathoracic ganglion.

  2. 2.

    For a singing response to be elicited by hearing a female chirp, it is necessary and sufficient that the connectives linking TG3 and the supraesophageal ganglion (brain) of the male be intact on at least one side (as has been shown forGomphocerippus rufus by Loher and Huber 1966, and Elsner and Huber 1969). Neither the three thoracic ganglia alone nor the thoracic-ganglion complex plus the subesophageal ganglion suffice to elicit either the turning or the singing response. The most probable explanation of our results is that the information paths for both responses make a loop via the brain.

  3. 3.

    A crucial step in sound direction processing takes place within TG3 itself. The results after connective cutting indicate a reciprocally inhibitory interaction within this ganglion by which the difference between right and left tympanal input is enhanced.

  4. 4.

    The information about sound direction carried in either connective alone is incomplete. Therefore, an additional ‘comparator element’ must exist, which receives the ‘directional signals’ from both connectives and converts them into an unambiguous turning command. This step in direction processing must occur either in the brain or along the pathways descending from the brain to the anterior two thoracic ganglia.

  5. 5.

    The anterior two thoracic ganglia, as well as the subesophageal ganglion, make either no contribution or a negligibly small contribution to the determination of sound direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CNS :

Central nervous system

Brain :

Supraesophageal ganglion

SOG :

Subesophageal ganglion

TG1 :

Prothoracic ganglion

TG2 :

Mesothoracic ganglion

TG3 :

Metathoracic ganglion (including the first 3 abdominal ganglia, which are fused to it)

TO :

Tympanal organ

SA :

Stridulation apparatus

TA :

Turning apparatus

IRM :

Innate releasing mechanism

LS :

Loudspeaker

n :

Total number of stimulus (female chirp) presentations

References

  • Altman JS, Kien J (1979) Suboesophagial neurons involved in head movements and feeding in locusts. Proc R Soc London B 205:209–227

    Google Scholar 

  • Autrum H (1936) Über Lautäußerungen und Schallwahrnehmung bei Arthropoden. Z Vergl Physiol 23:332–373

    Google Scholar 

  • Bentley DR (1977) Control of cricket song pattern by descending interneurons. J Comp Physiol 116:19–38

    Google Scholar 

  • Boyan GS (1983) Postembryonic development in the auditory system of the locust. J Comp Physiol 151:499–513

    Google Scholar 

  • Boyan GS, Altman JS (1985) The suboesophagial ganglion: a ‘missing link’ in the auditory pathway of the locust. J Comp Physiol A 156:413–428

    Google Scholar 

  • Busnel MC, Burkhardt D (1962) An electrophysiological study of the phonokinetic reaction inLocusta migratoria. Symp Zool Soc London 7:13–44

    Google Scholar 

  • Elsner N (1969) Kommandofasern im ZNS der HeuschreckeGastrimargus africanus (Oedipodinae). Zool Anz Suppl 33 (Verh Zool Ges) 1969: 465–71

    Google Scholar 

  • Elsner N (1973) The central nervous control of courtship behaviour in the grasshopperGomphocerus rufus. In: Salanki J (ed) Neurobiology of invertebrates. Tihany, Hung Acad Sci, pp 261–287

    Google Scholar 

  • Elsner N (1974) Neuroethology of sound production in gomphocerine grasshoppers (Orthoptera: Acrididae). I. Song patterns and stridulatory movements. J Comp Physiol 88:67–102

    Google Scholar 

  • Elsner N (1975) Neuroethology of sound production in gomphocerine grasshoppers (Orthoptera: Acrididae). II. Neuromuscular activity underlying stridulation. J Comp Physiol 97:291–322

    Google Scholar 

  • Elsner N, Huber F (1969) Die Organisation des Werbegesanges der HeuschreckeGomphocerippus rufus in Abhängigkeit von zentralen und peripheren Bedingungen. Z Vergl Physiol 65:389–423

    Google Scholar 

  • Graham D (1979) Effects of circum-oesophagial lesion on the behaviour of the stick insectCarausius morosus. I. Cyclic behaviour patterns. Biol Cybern 32:139–145

    Google Scholar 

  • Hedwig B (1984) Activity and deafness of auditory interneurons during stridulation in the grasshopperOmocestus viridulus. Naturwissenschaften 71:380–381

    Google Scholar 

  • Hedwig B (1985) Untersuchungen zur Kontrolle des Feldheuschreckengesangs durch intersegmentale Neurone. Dissertation, Göttingen 1985

  • Hedwig B, Elsner N (1980) A neuroethological analysis of sound production in the acridid grasshopperOmocestus viridulus. Adv Physiol Sci 23:495–514

    Google Scholar 

  • Hedwig B, Elsner N (1985) Sound production and sound detection in a stridulating acridid grasshopper (Omocestus viridulus). In: Kalmring K, Elsner N (eds) Acoustic and vibrational communication in insects. Parey, Hamburg, pp 61–72

    Google Scholar 

  • Helversen D von (1984) Parallel processing in auditory pattern recognition and directional analysis by the grasshopperChorthippus biguttulus L. (Acrididae). J Comp Physiol A 154:837–846

    Google Scholar 

  • Helversen D von, Helversen O von (1983) Species recognition and acoustic localization in acridid grasshoppers: A behavioural approach. In: Huber F, Markl H (eds) Neuroethology and behavioral physiology. Springer, Berlin Heidelberg New York Tokyo, pp 95–107

    Google Scholar 

  • Hoyle G, Burrows M (1973) Neural mechanisms underlying behavior in the locustSchistocerca gregaria. I. Physiology of identified motorneurons in the metathoracic ganglion. J Neurobiol 4:3–41

    Google Scholar 

  • Huber F (1952) Verhaltensstudien an Männchen der Feldgrille (Gryllus campestris L) nach Eingriffen am ZNS. Verhdl Dtsch Zool Ges Freiburg 1952 (Zool Anz 46): 138–149

    Google Scholar 

  • Huber F (1955) Sitz und Bedeutung nervöser Zentren für Instinkthandlungen beim Männchen vonGryllus campestris L. Z Tierpsychol 12:12–48

    Google Scholar 

  • Huber F (1959) Auslösung von Bewegungsmustern durch elektrische Reizung des Oberschlundganglions bei Orthopteren (Saltatoria: Gryllidae, Acridiidae). Zool Anz [Suppl] 23:248–269

    Google Scholar 

  • Huber F (1960) Untersuchungen über die Funktion des ZNS und insbesondere des Gehirnes bei der Fortbewegung und der Lauterzeugung der Grillen. Z Vergl Physiol 44:60–132

    Google Scholar 

  • Huber F (1967) Central control of movements and behavior of invertebrates. In: Wiersma CAG (ed) Invertebrate nervous systems. University Chicago press, Chicago, pp 333–351

    Google Scholar 

  • Kalmring K (1975) The afferent auditory pathway in the ventral cord ofLocusta migratoria. I. Synaptic connectivity and information processing among the auditory neurons of the ventral cord. J Comp Physiol 104:103–141

    Google Scholar 

  • Kalmring K, Rheinlaender J, Rehbein H (1972a) Akustische Neuronen im Bauchmark der WanderheuschreckeLocusta migratoria. Z Vergl Physiol 76:314–332

    Google Scholar 

  • Kalmring K, Rheinlaender J, Römer H (1972b) Akustische Neuronen im Bauchmark vonLocusta migratoria: Der Einfluß der Schallrichtung auf die Antwortmuster. J Comp Physiol 80:325–352

    Google Scholar 

  • Kalmring K, Kühne R, Moysich F (1978) The auditory pathway in the ventral cord of the migratory locust (Locusta migratoria): Response transmission in the axons. J Comp Physiol 126:25–33

    Google Scholar 

  • Kien J (1980) Mechanisms of motor control by plurisegmental interneurons in locusts. J Comp Physiol 140:303–320

    Google Scholar 

  • Kien J (1983) The initiation and maintenance of walking in the locust: An alternative to the command concept. Proc R Soc London B 219:137–174

    Google Scholar 

  • Kien J, Altman JS (1984) Descending interneurones from the brain and suboesophagial ganglia and their role in the control of locust behaviour. J Insect Physiol 30:59–72

    Google Scholar 

  • Kutsch W, Otto D (1972) Evidence for spontaneous song production independent of head ganglia inGryllus campestris. J Comp Physiol 81:115–119

    Google Scholar 

  • Loher W, Huber F (1966) Nervous and endocrine control of sexual behaviour in a grasshopper (Gomphocerus rufus L., Acridinae). Symp Soc Exp Biol 20:381–400

    Google Scholar 

  • Michelsen A (1971) The physiology of the locust ear. III. Acoustic properties of the intact ear. Z Vergl Physiol 71:102–128

    Google Scholar 

  • Miller LA (1977) Directional hearing in the locustSchistocerca gregaria. J Comp Physiol 119:85–98

    Google Scholar 

  • Otto D (1967) Untersuchungen zur nervösen Kontrolle des Grillengesanges. Zool Anz [Suppl] 31:585–592

    Google Scholar 

  • Otto D (1971) Untersuchungen zur zentralnervösen Kontrolle der Lauterzeugung von Grillen. Z Vergl Physiol 74:227–271

    Google Scholar 

  • Regen J (1914) Untersuchungen über die Stridulation und das Gehör vonThamnotrizon apterus Fab. SB Akad Wiss Wien, Math-naturwiss Kl 123:853–892

    Google Scholar 

  • Rehbein H (1976) Auditory neurons in the ventral cord of the locust: Morphological and functional properties. J Comp Physiol 110:233–250

    Google Scholar 

  • Rehbein H, Kalmring K, Römer H (1974) Structure and function of acoustic neurones in the thoracic ventral nerve cord ofLocusta migratoria. J Comp Physiol 95:263–280

    Google Scholar 

  • Reichert H, Wine JJ (1983) Coordination of lateral giant and non-giant systems in crayfish escape behavior. J Comp Physiol 153:3–15

    Google Scholar 

  • Robertson RM, Pearson KG (1982) A preparation for the intracellular analysis of neuronal activity during flight in the locust. J Comp Physiol 146:311–320

    Google Scholar 

  • Robertson RM, Pearson KG (1983) Interneurones in the flight system of the locust: Distribution, connections and resetting properties. J Comp Neurol 215:33–50

    Google Scholar 

  • Römer H (1985) Anatomical representation of frequency and intensity in the auditory system of Orthoptera. In: Kalmring K, Elsner N (eds) Acoustic and vibrational communication in insects. Parey, Berlin Hamburg, pp 25–32

    Google Scholar 

  • Römer H, Dronse R (1982) Synaptic mechanisms of monaural and binaural processing in the locust. J Insect Physiol 28:365–370

    Google Scholar 

  • Römer H, Marquart V (1984) Morphology and physiology of auditory interneurones in the metathoracic ganglion of the locust. J Comp Physiol A 155:249–262

    Google Scholar 

  • Römer H, Rheinlaender J, Dronse R (1981) Intracellular studies on auditory processing in the metathoracic ganglion of the locust. J Comp Physiol 144:305–312

    Google Scholar 

  • Wadepuhl M (1983) Control of grasshopper singing behavior by the brain: responses to electrical stimulation. Z Tierpsychol 63:173–200

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Franz Huber on the occasion of his 60. birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ronacher, B., Helversen, D.v. & Helversen, O.v. Routes and stations in the processing of auditory directional information in the CNS of a grasshopper, as revealed by surgical experiments. J. Comp. Physiol. 158, 363–374 (1986). https://doi.org/10.1007/BF00603620

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00603620

Keywords

Navigation