Skip to main content
Log in

The influence of tube voltage, X-ray exposure rate and thickness of filter material on image quality with dual-energy subtraction imaging in chest diagnostics

  • Chest Radiology
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Digital luminescent radiography enables dual-energy subtraction imaging, because this computed system allows susbtraction of imaging data and image post processing, as for example special windowing or edge enhancement. In a special cassette a copper filter is placed between two imaging plates for energy separation by a single X-ray exposure. Image post-processing with subtraction of imaging data permits the elimination of either skeleton or soft tissue structures. The influence of filter thickness, tube voltage and the X-ray exposure dosage on image quality is examined by the use of an anthropomorphic quality is examined by the use of an anthropomorphic phantom of the chest. According to our initial results dual energy subtraction imaging in one-shot-technique seems to be useful in the diagnostics of skeletal lesions and especially pulmonary nodules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jacobson B (1953) Dichromatic absorption radiography: dichromography. Acta Radiol 39: 436–452

    Google Scholar 

  2. Reed GW (1966) The assessment of bone mineralization from the relative transmission of 241Am and 137Csradiations (abstract). Phys Med Biol 11: 174

    Google Scholar 

  3. Mistretta CA, Ort MG, Kelcz F, Cameron JR, Siedband MP, Crummy AB (1973) Absorption edge fluoroscopy using quasimonoenergetic X-ray beams. Invest Radiol 8: 402–412

    Google Scholar 

  4. Zatz LM (1976) The effect of the kVp level on EMI values: selective imaging of various materials with different kVp settings. Radiology 119: 683–688

    Google Scholar 

  5. Hall AL, Pelc NJ, Riederer SJ, et al (1981) Experimental system for dual-energy scanned projection radiography. Proc SPIE 314: 155–159

    Google Scholar 

  6. Keyes GS, Riederer SJ, Belanger BF, Brody WR (1982) Hybrid subtraction in digital fluorography. Proc SPIE 347: 34–41

    Google Scholar 

  7. Brody WR, Cassel DM, Sommer FG, et al (1981) Dual-energy projection radiography initial clinical experience. AJR 137: 201–205

    Google Scholar 

  8. Brody WR, Macovski A, Pelc NJ, Lehmann L, Joseph RA, Edelheit LS (1981) Intravenous arteriography using scanned projection radiography. Radiology 141: 509–514

    Google Scholar 

  9. Lehmann LA, Alvarez RE, Macovski A, Brody WR (1981) Generalized image combinations in dual kVp digital radiography. Med Phys 8: 659–667

    Google Scholar 

  10. Sommer FG, Brody WR, Gross D, Macovski A (1982) Renal imaging with dual-energy projection radiography. AJR 138: 317–322

    Google Scholar 

  11. Speller RD, Ensell GJ, Wallis C (1983) A system for dual-energy radiography. Br J Radiol 56: 461–465

    Google Scholar 

  12. Ishida M, Kato H (1984) Digital radiography. Jpn J Med Electrical Biol Eng 22: 53–60

    Google Scholar 

  13. Ishigaki T, Sakuma S, Horikawa Y, Ikeda M, Yamaguchi H (1986) One-shot dual-energy subtraction imaging. Radiology 161: 271–273

    Google Scholar 

  14. Brody WR, Butt G, Hall A, Macovski A (1981) A method for selective tissue and bone visualization using dual-energy scanned projection radiography. Med Phys 8: 353–357

    Google Scholar 

  15. Fraser RG, Hickey NM, Niklason LT, et al (1986) Calcification in pulmonary nodules: detection with dual-energy digital radiography. Radiology 160: 595–601

    Google Scholar 

  16. Takashima T (1987) Single exposure energy subtraction chest radiography in the diagnosis of pulmonary cancer. Nippon Acta Radiol 47: 455–464

    Google Scholar 

  17. Hickey NM, Niklason LT, Sabbagh E, Fraser RG, Barnes GT (1987) Dual-energy digital radiographic quantification of calcium in simulated pulmonary nodules. AJR 148: 19–24

    Google Scholar 

  18. Niklason LT, Hickey NM, Chakraborty DP, et al (1986) Simulated pulmonary nodules: detection with dual-energy digital versus conventional radiography. Radiology 160: 589–593

    Google Scholar 

  19. Alvarez RE, Macovski A (1976) Energy-selective reconstructions in X-ray computed tomography. Phys Med Biol 21: 733–7414

    Google Scholar 

  20. Brooks RA, Di Chiro G (1978) Split-detector computed tomography: a preliminary report. Radiology 126: 255–257

    Google Scholar 

  21. Asaga T, Chiyasu S, Matsuda S, et al (1987) Breast imaging: dualenergy projection radiography with digital radiography. Radiology 164: 869–870

    Google Scholar 

  22. Nishitany H, Umezu Y, Ogawa K, Yuzuriha H, Tanaka H, Matsuura K (1986) Dual-energy projection radiography using condenser X-ray generator and digital radiography apparatus. Radiology 161: 531–535

    Google Scholar 

  23. Sonoda M, Takano M, Miyahara J, Kato H (1983) Computed radiography utilizing scanning laser-stimulated luminescence. Radiology 148: 833–838

    Google Scholar 

  24. Ishigaki T, Sakuma S, Ikeda M (1988) One-shot dual-energy subtraction chest imaging with computed radiography. Clinical evaluation of film images. Radiology 168: 67–72

    Google Scholar 

  25. Bautz W, Kalender WA (1987) Klinische Ergebnisse der Zwei-Spektren-Radiographie bei Thoraxuntersuchungen. Fortschr Röntgenstr 146 (5): 497–504

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, R.D., Voß, M., John, V. et al. The influence of tube voltage, X-ray exposure rate and thickness of filter material on image quality with dual-energy subtraction imaging in chest diagnostics. Eur. Radiol. 2, 258–263 (1992). https://doi.org/10.1007/BF00595841

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00595841

Key words

Navigation