Skip to main content

Advertisement

Log in

Optimization of dual-energy subtraction chest radiography by use of a direct-conversion flat-panel detector system

  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

We aimed to optimize the exposure conditions in the acquisition of soft-tissue images using dual-energy subtraction chest radiography with a direct-conversion flat-panel detector system. Two separate chest images were acquired at high- and low-energy exposures with standard or thick chest phantoms. The high-energy exposure was fixed at 120 kVp with the use of an auto-exposure control technique. For the low-energy exposure, the tube voltages and entrance surface doses ranged 40–80 kVp and 20–100 % of the dose required for high-energy exposure, respectively. Further, a repetitive processing algorithm was used for reduction of the image noise generated by the subtraction process. Seven radiology technicians ranked soft-tissue images, and these results were analyzed using the normalized-rank method. Images acquired at 60 kVp were of acceptable quality regardless of the entrance surface dose and phantom size. Using a repetitive processing algorithm, the minimum acceptable doses were reduced from 75 to 40 % for the standard phantom and to 50 % for the thick phantom. We determined that the optimum low-energy exposure was 60 kVp at 50 % of the dose required for the high-energy exposure. This allowed the simultaneous acquisition of standard radiographs and soft-tissue images at 1.5 times the dose required for a standard radiograph, which is significantly lower than the values reported previously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. MacAdams HP, Samei E, Dobbins J, Tourassi GD, Ravin CE. Recent advances in chest radiography. Radiology. 2006;241:663–83.

    Article  Google Scholar 

  2. Macmahon H, Li F, Engelmann R, Roberts R, Armato S. Dual energy subtraction and temporal subtraction chest radiography. J Thorac Imaging. 2008;23:77–85.

    Article  PubMed  Google Scholar 

  3. Kelcz F, Zink FE, Peppler WW, Kruger DG, Ergun DL, Mistretta CA. Conventional chest radiography vs. dual-energy computed radiography in the detection and characterization of lung nodules. Am J Roentgenol. 1994;162:271–8.

    Article  CAS  Google Scholar 

  4. Uemura M, Miyagawa M, Yasuhara Y, Murakami T, Ikura H, Sakamoto K, Tagashira H, Arakawa K, Mochizuki T. Clinical evaluation of pulumonary nodules with dual-exposure dual-energy subtraction chest radiography. Radiat Med. 2005;23:391–7.

    PubMed  Google Scholar 

  5. Tagashira H, Arakawa K, Yoshimoto M, Mochizuki T, Murase K. Detectability of lung nodules using flat panel detector with dual energy subtraction by two shot method: evaluation by ROC method. Eur J Radiology. 2007;64:279–84.

    Article  Google Scholar 

  6. Kashani H, Gang JG, Shkumat NA, Varon CA, Yorkston J, Metter RV, Paul NS, Siewerdsen JH. Development of a high-performance dual-energy chest imaging system: initial investigation of diagnostic performance. Acad Radiol. 2009;16:464–76.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Kashani H, Varon CA, Paul NS, Gang GJ, Metter RV, Yorkston J, Siewerdsen JH. Diagnostic performance of a prototype dual-energy chest imaging system: rOC analysis. Acad Radiol. 2010;17:298–308.

    Article  PubMed  Google Scholar 

  8. Oda S, Awai K, Funama Y, Utsunomiya D, Yanaga Y, Kawanaka K, Nakaura T, Hirai T, Murakami R, Nomori H, Yamashita Y. Detection of small pulmonary nodules on chest radiographs: efficiency of dual-energy subtraction technique using flat-panel detector chest radiography. Clin Radiol. 2010;65:609–15.

    Article  CAS  PubMed  Google Scholar 

  9. Veldkamp WJ, Kroft LJ, Geleijins J. Dose and perceived image quality in chest radiography. Eur J Radiology. 2009;72:209–17.

    Article  Google Scholar 

  10. Fischbach F, Freund T, Rottgen R, Engert U, Felix R, Ricke J. Dual-energy chest radiography with a flat-panel digital detector: revealing calcified chest abnormalities. AJR Am J Roentgenol. 2003;181:1519–24.

    Article  PubMed  Google Scholar 

  11. Samei E, Flynn MJ. An experimental comparison of detector performance for direct and indirect digital radiography systems. Med Phys. 2003;30:608–22.

    Article  PubMed  Google Scholar 

  12. Borasi G, Nitrosi A, Ferrari P, Tassoni D. Onsite evaluation of three flat panel detectors fordigital radiography. Med Phys. 2003;30:1719–31.

    Article  PubMed  Google Scholar 

  13. Saunders RS Jr, Samei E, Hoeschen C. Impact of resolution and noise characteristics digital dariographic detectors on the detectability of lung nodules. Med Phys. 2004;31:1603–13.

    Article  PubMed  Google Scholar 

  14. Ricke J, Fischbach F, Freund T, Teichgraber U, Hanninen EL, Rattgen R, Engert U, Eichstadt H, Felix R. Clinical results of CsI-detector-based dual-exposure dual energy in chest radiography. Eur Radiol. 2003;13:2577–82.

    Article  PubMed  Google Scholar 

  15. Ruhl R, Wozniak MM, Werk M, Laurent F, Mager G, Montaudon M, Pattermann A, Scherrer A, Tasu JP, Pech M, Ricke J. CsI-detector-based dual-exposure dual energy in chest radiography for lung nodule detection: results of an international multicenter trial. Eur Radiol. 2008;18:1831–9.

    Article  PubMed  Google Scholar 

  16. Fujifilm. Image processing (Energy subtraction). General description of image processing. Tokyo: Fujifilm; 2002. p. 209–17.

    Google Scholar 

  17. Shkumat NA, Siewerdsen JH, Dhanantwari AC, Williams DB, Richard S, Paul NS, Yorkston J, Van Metter R. Optimization of image acquisition techniques for dual-energy imaging of the chest. Med Phys. 2007;34:3904–15.

    Article  CAS  PubMed  Google Scholar 

  18. Kato H, Fujii S, Yoshimi Y. Development of computer code, SDEC, for evaluation of patient surface dose from diagnostic X-ray. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2009;65:1400–6.

    Article  PubMed  Google Scholar 

  19. Guilford JP. The method of rank order. Psychometric methods. New York: McGraw-Hill Book; 1954. p. 251–306.

    Google Scholar 

  20. Neitzel U. Status and prospects of digital detector technology for CR and DR. Radiat Prot Dosimetry. 2005;114:32–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support for this study was provided by Fujifilm Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mari Fukao.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukao, M., Kawamoto, K., Matsuzawa, H. et al. Optimization of dual-energy subtraction chest radiography by use of a direct-conversion flat-panel detector system. Radiol Phys Technol 8, 46–52 (2015). https://doi.org/10.1007/s12194-014-0285-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-014-0285-y

Keywords

Navigation