Pflügers Archiv

, Volume 324, Issue 2, pp 155–164 | Cite as

The low frequency input impedance of the renal artery

  • Thomas Kenner
  • Koichi Ono
Article

Summary

The renal artery of anesthetized dogs was perfused by a peristaltic pump with arterial blood. The pump rate could be modulated sinusoidally between 0.75 Hz and 0.0005 Hz. The frequency response of the renal arterial pressure to sinusoidal arterial flow of varying frequency and constant amplitude indicated the existence of a very slow autoregulatory pressure controlling mechanism, besides the autoregulation of flow. This fact is supported by the pressure responses to step flow increase, which show a very slow secondary pressure decrease. The time constant of this new autoregulatory phenomenon is in the order of 1000 sec. A simple linear second order model allows to simulate the renal arterial pressure flow relation (input impedance) as well as the characteristic step responses. Both the autoregulation of flow and the very slow autoregulation of pressure appear to be first order mechanisms.

Key-Words

Input-Impedance Autoregulation Frequency Dependence Step Responses 

Schlüsselwörter

Eingangswiderstand Autoregulation Frequenzabhängigkeit Sprungantwort 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Başar, E., Tischner, H., Weiss, Ch.: Untersuchungen zur Dynamik druckinduzierter Änderungen des Strömungswiderstandes der autoregulierenden, isolierten Rattenniere. Pflügers Arch. ges. Physiol.299, 191–213 (1968).Google Scholar
  2. —, Weiss, Ch.: Analyse des Frequenzganges druckinduzierter Änderungen des Strömungswiderstandes isolierter Rattennieren. Pflügers Arch.304, 121–135 (1968).Google Scholar
  3. Johnson, P. C.: Autoregulation of blood flow. Circulat. Res.15, Suppl. 1 (1964).Google Scholar
  4. Kramer, K., Deetjen, P.: Beziehungen des O2-Verbrauches der Niere zu Durchblutung und Glomerulumfiltrat bei Änderung des arteriellen Drucks. Pflügers Arch. ges. Physiol.271, 782–796 (1960).Google Scholar
  5. Lassen, N. A., Munck, O., Thaysen, J. H.: Oxygen consumption and sodium reabsorption in the kidney. Acta physiol. scand.51, 371–384 (1961).Google Scholar
  6. Milhorn, H. T.: The application of control theory to physiological systems. Philadelphia-London: W. B. Saunders 1966.Google Scholar
  7. Taylor, M. G.: Use of random excitation and spectral analysis in the study of frequency dependent parameters of the cardiovascular system. Circulat. Res.18, 585–595 (1966).Google Scholar
  8. Thurau, K.: Renal hemodynamics. Amer. J. Med.36, 698–719 (1964).Google Scholar
  9. Wetterer, E., Kenner, T.: Grundlagen der Dynamik des Arterienpulses. Berlin-Heidelberg-New York: Springer 1968.Google Scholar

Copyright information

© Springer-Verlag 1971

Authors and Affiliations

  • Thomas Kenner
    • 1
  • Koichi Ono
    • 1
  1. 1.Division of Biomedical EngineeringUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations