Skip to main content
Log in

The effect of ferrous ions, tungstate and selenite on the level of formate dehydrogenase inClostridium formicoaceticum and formate synthesis from CO2 during pyruvate fermentation

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

In a medium containing a trace element solution and 10-4 M ferrous ions the growth yield ofClostridium formicoaceticum on fructose was 5.5 g of weight per l; in the absence of metal ion solution it was 1 g per l. The specific activity of methyl viologen dependent formate dehydrogenase under both conditions was 0.28 and 0.03 units per mg of protein, respectively. It could be increased to 9.75 units when the growth medium contained 10-4 M tungstate and 10-5 M selenite in addition.

Molybdate was only about 40% as effective as tungstate. Tungstate or molybdate could not be replaced by vanadate, selenite not by sulfide.

The formate dehydrogenase catalyzed also the reduction of CO2 to formate. The highest rate of formate synthesis was observed when pyruvate served as the reductant. No pyruvate: formate exchange but rapid pyruvate: CO2 exchange could be observed with cell-free extracts ofC. formicoaceticum.

Pyruvate is fermented byC. formicoaceticum to yield up to 1.16 mole acetate per mole of pyruvate. Resting cells accumulated some formate in addition to acetate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreesen, J. R.: Säurebildung und Kohlenhydratabbau bei neu isolierten Stämmen vonClostridium aceticum. Diss., Göttingen 1969

  • Andreesen, J. R., Gottschalk, G.: The occurrence of a modified Entner-Doudoroff pathway inClostridium aceticum. Arch. Mikrobiol.69, 160–170 (1969)

    Google Scholar 

  • Andreesen, J. R., Gottschalk, G., Schlegel, H. G.:Clostridium formicoaceticum nov. spec. Isolation, description and distinction fromC. aceticum andC. thermoaceticum. Arch. Mikrobiol.72, 154–174 (1970)

    Google Scholar 

  • Andreesen, J. R., Ljungdahl, L.: Conversion of CO2 (HCO3 -) to formyltetrahydrofolate by formate dehydrogenase and formyltetrahydrofolate synthetase fromClostridium thermoaceticum. Bact. Proc.1971, 166

  • Andreesen, J. R., Ljungdahl, L. G.: Formate dehydrogenase ofClostridium thermoaceticum. Incorporation of selenium-75, and the effects of selenite, molybdate, and tungstate on the synthesis of the enzyme. J. Bact.116, 867–873 (1973)

    Google Scholar 

  • Andreesen, J. R., Schaupp, A., Neurauter, C., Brown, A., Ljungdahl, L. G.: Fermentation of glucose, fructose and xylose byClostridium thermoaceticum. Effects of metals on growth yield, enzymes and the synthesis of acetate from CO2. J. Bact.114, 743–751 (1973)

    Google Scholar 

  • Arst, H. N., MacDonald, D. W., Cove, D. J.: Molybdate metabolism inAspergillus nidulans. I. Mutations affecting nitrate reductase and/or xanthine dehydrogenase. Molec. Gen. Genetics108, 129–145 (1970)

    Google Scholar 

  • Barker, H. A.: On the role of CO2 in the metabolism ofClostridium thermoaceticum. Proc. nat. Acad. Sci. (Wash.)30, 88–90 (1944)

    Google Scholar 

  • Beisenherz, G., Bolze, H. J., Bücher, Th. Czok, R., Garbade, K. H., Meyer-Arendt, E., Pfleiderer, G.: Diphosphofructose-Aldolase, Phosphoglyceraldehyd-Dehydrogenase, Milchsäure-Dehydrogenase, Glycerophosphat-Dehydrogenase und Pyruvat-Kinase aus Kaninchenmuskulatur in einem Arbeitsgang. Z. Naturforsch.8b, 555–577 (1953)

    Google Scholar 

  • Benemann, J., Smith, G. M. Kostel, P. J., McKenna, C. E.: Tungstate incorporation intoAzotobacter vinelandii nitrogenase. FEBS-Letters29, 219–221 (1973)

    Google Scholar 

  • Bradshaw, W. H., Reeder, D. J.: Ferredoxin coupling of formate oxidation to urate reduction in extracts ofClostridium cylindrosporum. Bact. Proc.1964, 110

  • Corwin, A. H., Arellano, R. R., Chivvis, A. B.: Anomalies of viologens in bases and water. Biochim. biophys. Acta (Amst.)162, 533–538 (1968)

    Google Scholar 

  • El Ghazzawi, E.: Neuisolierung vonClostridium aceticum Wieringa und stoffwechselphysiologische Untersuchungen. Arch. Mikrobiol.57, 1–19 (1967)

    Google Scholar 

  • Enoch, H. G., Lester, R. L.: Effects of molybdate, tungstate, and selenium compounds on formate dehydrogenase and other enzyme systems inEscherichia coli. J. Bact.110, 1032–1040 (1972)

    Google Scholar 

  • Higgins, E. S., Richert, D. A., Westerfeld, W. W.: Tungstate antagonism of molybdate inAspergillus niger. Proc. Soc. exp. Biol. (N. Y.)92, 509–511 (1956)

    Google Scholar 

  • Hug, D. H., Sagers, R. D.: Properties of a soluble formic dehydrogenase fromClostridium acidi-urici. Bact. Proc.1957, 111

  • Kearny, J. J., Sagers, R. D.: Formate dehydrogenase fromClostridium acidi-urici. J. Bact.109, 152–161 (1972)

    Google Scholar 

  • Keeler, R. F., Varner, J. E.: Tungstate as an antagonist of molybdate inAzotobacter vinelandii. Arch. Biochem. Biophys.70, 585–590 (1957)

    Google Scholar 

  • Knappe, J., Bohnert, E., Brummer, W.: S-adenosyl-L-methionine, a component of the clastic dissimilation of pyruvate inEscherichia coli. Biochim. biophys. Acta (Amst.)107, 603–605 (1965)

    Google Scholar 

  • Lester, R. L., DeMoss, J. A.: Effects of molybdate and selenite on formate and nitrate metabolism inEscherichia coli. J. Bact.105, 1006–1014 (1971)

    Google Scholar 

  • Li, L. F., Ljungdahl, L., Wood, H. G.: Properties of nicotinamide adenine dinucleotide phosphate-dependent formate dehydrogenase fromClostridium thermoaceticum. J. Bact.92, 405–412 (1966)

    Google Scholar 

  • Linke, H. A. B.: Der Fructose-Stoffwechsel vonClostridium aceticum. Zbl. Bakt. II. Abt.123, 369–379 (1969)

    Google Scholar 

  • Ljungdahl, L. G., Wood, H. G.: Total synthesis of acetate from CO2 by heterotrophic bacteria. Ann. Rev. Microbiol.23, 515–538 (1969)

    Google Scholar 

  • Notton, B. A., Hewitt, E. J.: The role of tungsten in the inhibition of nitrate reductase activity in spinach (Spinacea oleracea L.) leaves. Biochem. Biophys. Res. Commun.44, 702–710 (1971)

    Google Scholar 

  • O'Brien, W. E., Ljungdahl, L. G.: Fermentation of fructose and synthesis of acetate from carbon dioxide byClostridium formicoaceticum. J. Bact.109, 626–632 (1972)

    Google Scholar 

  • Peck, H. D., Gest, H.: Formic dehydrogenase and the hydrogenlyase enzyme complex in coli-aerogenes bacteria. J. Bact.73, 706–721 (1957)

    Google Scholar 

  • Pinsent, J.: The need of selenite and molybdate in the formation of formic dehydrogenase by members of the coli-aerogens group of bacteria. Biochem. J.57, 10–16 (1954)

    Google Scholar 

  • Rabinowitz, J. C., Pricer, W. E.: An enzymatic method for the determination of formic acid. J. biol. Chem.229, 321–328 (1962)

    Google Scholar 

  • Schulman, M., Parker, D., Ljungdahl, L. G., Wood, H. G.: Total synthesis of acetate from CO2. V. Determination by mass analysis of the different types of acetate formed from13CO2 by heterotrophic bacteria. J. Bact.109, 633–644 (1972)

    Google Scholar 

  • Shum, A. C., Murphy, J. C.: Effects of selenium compounds on formate metabolism and coincidence of selenium-75 incorporation and formic dehydrogenase activity in cell-free preparations ofEscherichia coli. J. Bact.110, 447–449 (1972)

    Google Scholar 

  • Takahashi, J., Nason, A.: Tungstate as a competitive inhibitor of molybdate in nitrate assimilation and in N2 fixation byAzotobacter. Biochim. biophys. Acta (Amst.)23, 433–435 (1957)

    Google Scholar 

  • Thauer, R. K., Rupprecht, E., Jungermann, K.: Separation of14C-formate from CO2 fixation metabolites by isoionic exchange chromatography. Analyt. Biochem.38, 461–468 (1970)

    Google Scholar 

  • Thauer, R. K.: CO2-reduction to formate by NADPH. The initial step in the total synthesis of acetate from CO2 inClostridium thermoaceticum. FEBS-Letters27, 111–115 (1972)

    Google Scholar 

  • Thaner, R. K.: CO2 reduction to formate inClostridium acidi-urici. J. Bact.114, 443–444 (1973)

    Google Scholar 

  • Trudinger, P. A.: On the absorbancy of reduced methyl viologen. Analyt. Biochem.36, 222–224 (1970)

    Google Scholar 

  • Turner, D. C., Stadtman, T. C.: Purification of protein components of the clostridial glycine reductase system and characterization of protein A as a selenoprotein. Arch. Biochem. Biophys.154, 366–381 (1973)

    Google Scholar 

  • Wieringa, K. T.: The formation of acetic acid from carbon dioxide and hydrogen by anaerobic spore-forming bacteria. Antonie v. Leeuwenhoek6, 251–262 (1940)

    Google Scholar 

  • Wilson, L. G., Bandurski, R. S.: Enzymatic reactions involving sulfate, sulfite, selenate, and molybdate. J. biol. Chem.233, 975–981 (1958)

    Google Scholar 

  • Wray, J. L., Filner, P.: Structural and functional relationships of enzyme activities induced by nitrate in barley. Biochem. J.119, 715–725 (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andreesen, J.R., El Ghazzawi, E. & Gottschalk, G. The effect of ferrous ions, tungstate and selenite on the level of formate dehydrogenase inClostridium formicoaceticum and formate synthesis from CO2 during pyruvate fermentation. Arch. Microbiol. 96, 103–118 (1974). https://doi.org/10.1007/BF00590167

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00590167

Key words

Navigation