Skip to main content
Log in

Influence of sodium ions on the regulation of frog myocardial contractility

  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Summary

In frog atrial bundles it is possible under voltage clamp conditions to distinguish between a “phasic” component of mechanical response, depending on Ca++ influx, and a “slow” component, which does not directly depend on the presence of extracellular Ca++ (Vassort et Rougier, 1972). The present results suggest that the “slow” component can be abolished by substituting LiCl for NaCl. The hypothesis is advanced that a displacement of Ca++ by Na+ from some intracellular binding sites by a variation of membrane potential or [Na]i causes the “slow” phase of contraction.

Furthermore, relaxation during the phasic component is markedly slowed when LiCl or sucrose is substituted for NaCl. This may indicate that a Na+-Ca++ exchange across the surface membrane is essential for relaxation.

A Na+-Ca++ exchange (a Ca influx linked to a Na efflux in this case) may account for the contractures elicited by Na-free media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashley, C. C., Ridgway, E. B.: On the relationships between membrane potential, calcium transient and tension in single barnacle muscle fibres. J. Physiol. (Lond.)209, 105–130 (1970).

    Google Scholar 

  • Baker, P. F., Blaustein, M. P., Hodgkin, A. L., Steinhardt, R. A.: The influence of calcium on sodium efflux in squid axons. J. Physiol. (Lond.)200, 431–458 (1969).

    Google Scholar 

  • Beauge, L. A., Ortiz, O.: Lithium-stimulated sodium efflux in frog skeletal muscle. Biochim. biophys. Acta (Amst.)219, 479–484 (1970).

    Google Scholar 

  • Beeler, G. W., Reuter, H.: The relation between membrane potential, membrane currents and activation of contraction in ventricular myocardial fibres. J. Physiol. (Lond.)207, 211–230 (1970).

    Google Scholar 

  • Bianchi, C. P.: Pharmacology of excitation-contraction coupling in muscle. Introduction: statement of the problem. Fed. Proc.28, 1624–1628 (1969).

    Google Scholar 

  • Blaustein, M. P., Hodgkin, A. L.: The effect of cyanide on calcium efflux in squid axons. J. Physiol. (Lond.)200, 497–527 (1969).

    Google Scholar 

  • Carmeliet, E. E.: Influence of lithium ions on the transmembrane potential and cation content of cardiac cells. J. Physiol. (Lond.)47, 501–530 (1964).

    Google Scholar 

  • Carvalho, A. P.: Binding of cations by microsomes from rabbit skeletal muscle. J. Cell Physiol.67, 73–84 (1966).

    Google Scholar 

  • Chesnais, J. M., Corabœuf, E., Sauviat, P. M., Vassas, J. M.: Effets des ions H+, Li+ et Sr++ sur les courants transmembranaires des fibres atriales de Grenouille. C.R. Acad. Sci. (Paris)273, 204–207 (1971).

    Google Scholar 

  • Denoit-Mazet, F., Vassort, G.: Ultrastructure des faisceaux sinoauriculaires de Grenouille en relation avec leur activité électrophysiologique. J. Micr.12, 30–39 (1971).

    Google Scholar 

  • Ebashi, S., Endo, M.: Calcium ion and muscle contraction. Progr. Biophys. molec. Biol.18, 123–183 (1968).

    Google Scholar 

  • Fleckenstein, A., Hertel, H.: Über die Zustandsänderung des kontraktilen Systems in Abhängigkeit vom extracellulären Kalcium und Natrium. Pflügers Arch. ges. Physiol.250, 577–597 (1948).

    Google Scholar 

  • Glitsch, H. G., Reuter, H., Scholz, H.: The effect of the internal sodium concentration on calcium fluxes in isolated guinea-pig auricles. J. Physiol. (Lond.)209, 25–43 (1970).

    Google Scholar 

  • Goto, M., Kimoto, Y., Suetsugu, Y.: Membrane currents responsible for contraction and relaxation of the bullfrog ventricle. Jap. J. Physiol.22, 315–331 (1972).

    Google Scholar 

  • Hasselbach, W., Makinose, M.: ATP and active transport. Biochem. biophys. Res. Commun.7, 132 (1962).

    Google Scholar 

  • Haugaard, N., Haugaard, E. S., Lee, N. H., Horn, R. S.: Possible role of mitochondria in regulation of cardiac contractility. Fed. Proc.28, 1657 (1969).

    Google Scholar 

  • Katase, T., Tomita, T.: Na participation in the recovery from K-contracture in the guinea-pig taenia coli. J. Physiol. (Lond.)224, 489–500 (1972).

    Google Scholar 

  • Kleinau, H., Schubert, E.: Die Längenveränderungen an Herzmuskelfasern von Hammel nach lokalem Angebot von CaCl2 verglichen mit der Wirkung von Mg-, Sr-, Na- und K-Chlorid. Pflügers Arch.306, 135–145 (1969).

    Google Scholar 

  • Langer, G. A.: Ion fluxes in cardiac excitation and contraction and their relation to myocardial contractility. Physiol. Rev.48, 708–757 (1968).

    Google Scholar 

  • Lee, K. S., Ladinsky, H., Choi, S. J., Kasuya, Y.: Studies on the vitro interaction of electrical stimulation and Ca++ movement in sarcoplasmic reticulum. J. gen. Physiol.49, 689–715 (1966).

    Google Scholar 

  • Leoty, C., Raymond, G.: Mechanical activity and ionic currents in frog trabeculae. Pflügers Arch.334, 114–128 (1972).

    Google Scholar 

  • Lüttgau, H. C., Niedergerke, R.: The antagonism between Ca and Na ions on the frog's heart. J. Physiol. (Lond.)143, 486–505 (1958).

    Google Scholar 

  • Mascher, D.: Electrical and mechanical responses from ventricular muscle fibers after inactivation of the sodium carrying system. Pflügers Arch.317, 359–372 (1970).

    Google Scholar 

  • Morad, M., Orkand, R. K.: Excitation-contraction coupling in frog ventricle: evidence from voltage clamp studies. J. Physiol. (Lond.)219, 167–189 (1971).

    Google Scholar 

  • Niedergerke, R.: Movements of Ca in frog heart ventricles at rest and during contractures. J. Physiol. (Lond.)167, 515–550 (1963).

    Google Scholar 

  • Niedergerke, R., Page, S., Talbot, M. S.: Calcium fluxes in frog heart ventricles. Pflügers Arch.306, 357–360 (1969).

    Google Scholar 

  • Ochi, R., Trautwein, W.: The dependence of cardiac contraction on depolarization and slow inward current. Pflügers Arch.323, 187–203 (1971).

    Google Scholar 

  • Ohnishi, T., Ebashi, S.: Velocity of calcium binding of isolated sarcoplasmic reticulum. J. Biochem.55, 599–603 (1964).

    Google Scholar 

  • Palmer, R. F., Posey, V. A.: Ion effects on calcium accumulation by cardiac sarcoplasmic reticulum. J. gen. Physiol.50, 2085–2096 (1967).

    Google Scholar 

  • Patriarca, P., Carafoli, E.: A study of the intracellular transport of calcium in rat heart. J. Cell Physiol.72, 29–38 (1968).

    Google Scholar 

  • Pfaffman, M., Urakawa, N., Holland, W. C.: Role of metabolism in K-induced tension changes in guinea-pig taenia coli. Amer. J. Physiol.208, 1203–1205 (1965).

    Google Scholar 

  • Repke, K.: Über den biochemischen Wirkungsmodus von digitalis. Klin. Wschr.42, 157–165 (1964).

    Google Scholar 

  • Reuter, H., Seitz, N.: The dependence of calcium efflux from cardiac muscle on temperature and external ion composition. J. Physiol. (Lond.)195, 451–470 (1968).

    Google Scholar 

  • Rougier, O., Vassort, G., Garnier, D., Gargouïl, Y. M., Corabœuf, E.: Existence and role of a slow inward current during the frog atrial action potential. Pflügers Arch.308, 91–110 (1969).

    Google Scholar 

  • Vassort, G., Rougier, O.: Membrane potential and slow inward current dependence of frog cardiac mechanical activity. Pflügers Arch.331, 191–203 (1972).

    Google Scholar 

  • Vassort, G., Rougier, O., Favelier, J.: Influence du potentiel de membrane et des courants transmembranaires sur l'activité contractile des faisceaux sino-auriculaires de la Grenouille. Arch. intern. Physiol. Biochim.79, 401–406 (1971).

    Google Scholar 

  • Woodbury, J. W.: Interrelationship between ion transport mechanisms and excitatory events. Fed. Proc.22, 31–35 (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work constitutes a part of “Doctorat es Sciences” No CNRS: AO 66 71. It was supported in part by contract DGRST, Paris, France.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vassort, G. Influence of sodium ions on the regulation of frog myocardial contractility. Pflugers Arch. 339, 225–240 (1973). https://doi.org/10.1007/BF00587374

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00587374

Key words

Navigation