Skip to main content
Log in

Zum Mechanismus der ökonomischen Halteleistung eines glatten Muskels (Byssus retractor anterior,Mytilus edulis)

The mechanism of high ‘holding economy’ in a smooth muscle

  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Summary

Freeze-dried fibre-bundles (GF) of the anterior byssus retractor muscle (ABRM) ofMytilus develop in Ca2+-containing ATP-salt-solution almost the same isometric tension as the surviving muscle and maintain the same tension remnant when Ca2+ is deprived. The ratio ATPase/tension of Ca2+-activated GF (0.15 mcal/sec × kg tension × cm fibre at 20°C, determined from ATPase measurements) corresponds to the heat of maintenance of living muscle in tetanus (0.07 mcal/see × kg × cm), while it is nearly zero when GF are in the “catch” state in Ca2+-free solution.

Contrary to isometric tension and tension remnant, the energy expenditure and speed of tension development depend on temperature (Q 10≈3); moreover the ratio ATPase/tension of Ca2+-activated GF decreases to 70% as the extent of the “caught” state increases in the course of three successive periods of contraction. But it increases again to the former level when the catch is abolished.

These findings are discussed in relation to the “Paramyosin-theory” of catch. With regard to the typical ultrastructure of caught muscle fibres it is suggested that their increased economy is based on interaction of the thick paramyosinfilaments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Baguet, F., Gillis, J. M.: The respiration of the anterior byssus retractor muscle ofMytilus edulis (ABRM) after a phasic contraction. J. Physiol. (Lond.)188, 67–82 (1967).

    Google Scholar 

  2. ——: Energy cost of tonic contraction in a lamellibranch catch muscle. J. Physiol. (Lond.)198, 127–143 (1968).

    Google Scholar 

  3. Bailey, K.: The proteins of adductor muscles. Pubbl. Staz. Zool Napoli39, 96–108 (1956).

    Google Scholar 

  4. Grützner, P.: Die glatten Muskeln. Ergebn. Physiol.3, 12–88 (1904).

    Google Scholar 

  5. hanson, J., Lowy, J.: Evidence for a sliding filament contractile mechanism in tonic smooth muscles of lamellibranch molluscs. Nature (Lond.)184, 286–287 (1959).

    Google Scholar 

  6. Heumann, H. G., Zebe, E.: Über die Funktionsweise glatter Muskelfasern. Elektronenmikroskopische Untersuchungen am Byssusretraktor (ABRM) vonMytilus edulis. Z. Zellforsch.85, 534–551 (1968).

    Google Scholar 

  7. Jewell, B. R.: The nature of the phasic and the tonic responses of the ABRM ofMytilus. J. Physiol. (Lond.)149, 154–177 (1959).

    Google Scholar 

  8. Johnson, W. H.: Tonic mechanisms in smooth muscle. Physiol. Rev.42, (Suppl. 5), 113–143 (1962).

    Google Scholar 

  9. — Kahn, J. S., Szent-Györgyi, A. G.: Paramyosin and contraction of “catch muscles”. Science130, 161 (1959).

    Google Scholar 

  10. — Twarog, B. M.: The basis for prolonged contraction in molluscan muscles. J. gen. Physiol.43, 941–960 (1960).

    Google Scholar 

  11. Leenders, H. J.: Catch, peak tension and ATPase activity in glycerinated oyster adductor. Comp. Biochem. Physiol.31, 187–196 (1969).

    Google Scholar 

  12. Lowy, J., Hanson, J.: Ultrastructure of invertebrate smooth muscle. Physiol. Rev.42 (Suppl. 5), 34–47 (1962).

    Google Scholar 

  13. — Millman, B. M.: The contractile mechanism of the anterior byssus retractor muscle (ABRM) ofMytilus edulis. Phil. Trans. B246, 105–148 (1963).

    Google Scholar 

  14. — Hanson, M. J.: Structure and function in smooth tonic muscles of lamellibranch molusces. Proc. roy. Soc. B160, 525–536 (1964).

    Google Scholar 

  15. Marsh, B. B.: The estimation of inorganic phosphate in the presence of adenosine triphosphate. Biochim. biophys. Acta (Amst.)32, 357–361 (1959).

    Google Scholar 

  16. Millman, B. M.: Contraction of the opaque part of the adductor muscle of the oyster. J. Physiol. (Lond.)173, 238–262 (1964).

    Google Scholar 

  17. Minihan-Nauss, K., Davies, R. E.: Changes in inorganic phosphate and arginine during the development, maintenance and loss of tension in the anterior byssus retractor muscle ofMytilus edulis. Biochem. Z.345, 173–187 (1966).

    Google Scholar 

  18. Portzehl, H., Caldwell, P. C., Rüegg, J. C.: The dependence of contraction and relaxation of muscle fibres from the crabMaia squinado on the internal concentration of free calcium ions. Biochim. biophys. Acta (Amst.)79, 581–591 (1964).

    Google Scholar 

  19. Reedy, M. K., Holmes, K. C., Tregear, R. T.: Induced changes in orientation of the crossbridges of glycerinated insect flight muscles. Nature (Lond.)207, 1276–1280 (1965).

    Google Scholar 

  20. Rome, E.: X-ray diffraction studies of the filament lattice of striated muscle in various bathing media. J. molec. Biol.37, 331–344 (1968).

    Google Scholar 

  21. Rüegg, J. C.: On the tropomyosin-paramyosin system in relation to the viscous tone of lamellibranch “catch”-muscle. Proc. roy. Soc. B154, 224–249 (1961).

    Google Scholar 

  22. —: Tropomyosin-Paramyosin system and “prolonged contraction” in a molluscan smooth muscle. Proc. roy. Soc. B160, 536–542 (1964).

    Google Scholar 

  23. —: A biochemical approach to the catch problem. In: Biochemistry of muscle contraction, p. 412. Ed. J. Gergely. Boston: Little Brown & Co. 1964.

    Google Scholar 

  24. —: Physiologie und Biochemie des Sperrtonus. Helv. physiol. pharmacol. Acta, Suppl.16, 1–76 (1965).

    Google Scholar 

  25. —: Contractile mechanisms of smooth muscle. In: Aspects of cell motility, pp. 45–66. Ed. P. L. Miller. Cambridge: University Press 1968.

    Google Scholar 

  26. Rüegg, J. C.: Smooth muscle tone. Physiol. Rev.51, 201–248 (1971).

    Google Scholar 

  27. —, Straub, R. W., Twarog, B. M.: Inhibition of contraction in a molluscan smooth muscle by thiourea, an inhibitor of the actomyosin contractile mechanism. Proc. roy. Soc. B158, 156–176 (1963).

    Google Scholar 

  28. — Weber, H. H.: Kontraktionszyklus und Sperrtonus. In: Perspectives in biology, pp. 301–320. Ed. by C. F. Cori, V. G. Foglia, L. F. Leloir, and S. Ochea. Amsterdam: Elsevier 1963.

    Google Scholar 

  29. Schädler, M.: Proportionale Aktivierung von ATPase-Aktivität und Kontraktionsspannung durch Calciumionen in isolierten contractilen Strukturen verschiedener Muskelarten. Pflügers Arch. ges. Physiol.296, 70–90 (1967).

    Google Scholar 

  30. Schumacher, T.: Paramyosinstruktur und Sperrtonus. Experientia (Basel)26, 631–633 (1970).

    Google Scholar 

  31. Szent-Györgyi, A. G., Cohen, C., Kendrick-Jones, J.: Paramyosin and the filaments of molluscan “catch”-muscles. J. molec. Biol.56, 230–258 (1971).

    Google Scholar 

  32. Twarog, B. M.: Innervation and activity of a molluscan smooth muscle. J. Physiol. (Lond.)152, 220–235 (1960).

    Google Scholar 

  33. —: Factors influencing contraction and catch inMytilus smooth muscle. J. Physiol. (Lond.)192, 847–856 (1967).

    Google Scholar 

  34. Uexküll, J. v.: Studien über den Tonus. VI. Die Pilgermuschel. Z. Biol.58, 305–322 (1912).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schumacher, T. Zum Mechanismus der ökonomischen Halteleistung eines glatten Muskels (Byssus retractor anterior,Mytilus edulis). Pflugers Arch. 331, 77–89 (1972). https://doi.org/10.1007/BF00587193

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00587193

Key words

Navigation