Skip to main content
Log in

Azide sensitive components of potassium efflux as influenced by the external sodium concentration

  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Summary

Sodium azide at concentrations <−1.0 mM was capable of stimulating potassium efflux from frog sartorius muscles with no significant influence on the intracellular sodium content. At concentrations >−2.0 mM, azide produced a continuously increasing rate of potassium loss which resulted in a net loss of intracellular potassium. This effect was mimicked at low azide concentrations (<−1.0 mM) in the presence of 10−5 M strophanthidin or 1.0 mM sodium cyanide. It was independent of the intracellular sodium content, but dependent on the external sodium concentration. While increasing concentrations of azide produced incremental increases in the rate of potassium loss in sodium-reduced Ringer's solution, the continuously increasing rate of loss and strophanthidin sensitivity was absent. It is concluded that the biphasic effect of azide on potassium efflux in skeletal muscle resulted from the interaction of this agent with at least two cellular processes, one of which was dependent on the external sodium concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abood, L. G., Koketsu, K., Noda, K.: Effect of dinitrophenol on phosphorylation and bioelectric phenomena of excitable tissues. Amer. J. Physiol.200, 431–436 (1961).

    Google Scholar 

  • Adrian, R. H.: The effect of internal and external potassium concentration on the membrane potential of frog muscle. J. Physiol. (Lond.)133, 631–658 (1956).

    Google Scholar 

  • —, Slayman, C. L.: Membrane potential and conductance during transport of sodium, potassium and rubidium in frog muscle. J. Physiol. (Lond.)184, 970–1014 (1966).

    Google Scholar 

  • Carey, Mary, J., Conway, E. J., Kernan, R. P.: Secretion of sodium ions by frog's sartorius. J. Physiol. (Lond.)148, 51–82 (1959).

    Google Scholar 

  • Cross, S. R., Keynes, R. D., Rybová, Renata: The coupling of sodium efflux and potassium influx in frog muscles. J. Physiol. (Lond.)181, 865–880 (1965).

    Google Scholar 

  • Desmedt, J. E.: Electrical activity and intracellular sodium concentrations in frog muscle. J. Physiol. (Lond.)121, 191–205 (1953).

    Google Scholar 

  • Haas, H. E., Hantsch, F., Otter, H. P., Siegel, G.: Untersuchungen zum Problem des aktiven K- und Na-Transport am Myokard. Pflügers Arch. ges. Physiol.294, 144–168 (1967).

    Google Scholar 

  • Henderson, E. G.: Strophanthidin sensitivity of skeletal muscles in sodium- and potassium-free solutions. Fed. Proc.30, 2670 (1971).

    Google Scholar 

  • —, Walkenstein, S.: Sodium azide stimulated potassium efflux from striated muscles. Pflügers Arch. ges. Physiol.326, 193–210 (1971).

    Google Scholar 

  • Hodgkin, A. L., Horowicz, P.: Movements of Na and Ka in single muscle fibers. J. Physiol. (Lond.)145, 405–432 (1959a).

    Google Scholar 

  • ——: The influence of potassium and chloride ions on the membrane potential of single muscle fibers. J. Physiol. (Lond.)148, 127–160 (1959b).

    Google Scholar 

  • —, Keynes, R. D.: The potassium permeability of the giant nerve fiber. J. Physiol. (Lond.)128, 61–88 (1955).

    Google Scholar 

  • Horowicz, P., Caputo, C., Robeson, J. A.: Rapid depolarization of frog muscle membranes by NaN3. Fed. Proc.21, 151 (1962).

    Google Scholar 

  • —, Gerber, C. J.: Effects of sodium azide on sodium fluxes in frog striated muscle. J. gen. Physiol.48, 515–525 (1965).

    Google Scholar 

  • Kernan, R. P.: Membrane potential changes during sodium transport in frog sartorius muscle. Nature (Lond.)193, 986–987 (1962).

    Google Scholar 

  • Keynes, R. D., Maisel, G. W.: The energy requirement for sodium extrusion from a frog muscle. Proc. roy. Soc. B142, 383–392 (1954).

    Google Scholar 

  • Lehninger, A. L.: The mitochondrion. New York-Amsterdam: W. A. Benjamin Inc. 1965.

    Google Scholar 

  • Ling, G., Gerard, R. W.: The membrane potential and metabolism of muscle fibers. J. cell. comp. Physiol.34, 413–437 (1949).

    Google Scholar 

  • Myerhoff, O.: The origin of the reaction of Harden and Young in cell-free alcoholic fermentation. J. biol. Chem.157, 105–119 (1945).

    Google Scholar 

  • Moreva, E., Podlesnaya, A.: Effect of sodium azide on the balance of high energy phosphate compounds of skeletal muscle. Trudy Inst. Eksptl. Med. Akad. Med. Nauk SSR Ezhegodink Liningrad, pp. 206–209 (1959).

  • Shaw, F. H., Simon, Shirely E: Sodium extrusion in muscle. Nature (Lond.)176, 1031–1032 (1955).

    Google Scholar 

  • Sjodin, R. A.: The potassium flux ratio in skeletal muscle as a test for independent ion movement. J. gen. Physiol.48, 777–795 (1965).

    Google Scholar 

  • —: The kinetics of sodium extrusion in striated muscle as functions of the external sodium and potassium ions. J. gen. Physiol.57, 164–187 (1971).

    Google Scholar 

  • —, Beaugé, L. A.: Strophanthidin-sensitive components of potassium and sodium movements in skeletal muscle as influenced by the internal sodium concentration. J. gen. Physiol.52, 389–407 (1968).

    Google Scholar 

  • —, Henderson, E. G.: Tracer and non-tracer potassium fluxes in frog sartorius muscles and the kinetics of net potassium movement. J. gen. Physiol.47, 605–638 (1964).

    Google Scholar 

  • Teorell, T.: Membrane electrophoresis in relation to bioelectric polarization effects. Arch. Sci. Physiol.3, 205–219 (1949).

    Google Scholar 

  • Ussing, H. H.: The distinction by means of tracers between active transport and diffusion. Acta physiol. scand.19, 43–56 (1949).

    Google Scholar 

  • Vigers, G. A., Ziegler, R. D.: Azide inhibition of mitochondrial ATPase. Biochem. biophys. Res. Commun.30, 83–88 (1968).

    Google Scholar 

  • Wilson, D. F., Chance, B.: Azide inhibition of mitochondrial electron transport. I. The aerobic steady state of succinate. oxidation. Biochim. biophys. Acta (Amst.)131, 421–430 (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henderson, E.G. Azide sensitive components of potassium efflux as influenced by the external sodium concentration. Pflugers Arch. 329, 95–114 (1971). https://doi.org/10.1007/BF00586985

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00586985

Key-Words

Navigation