Skip to main content
Log in

(Na+K+)-activated ATPase in human cornea

Distribution within the cornea and properties of the enzyme from epithelial cells

  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Summary

Distribution and principal characteristics of (Na+K+)-activated ATPase in human cornea were investigated.

(Na+K+)-ATPase was present in both epithelium and endothelium, whereas the corneal stroma did not exhibit significant enzyme activity.

In homogenates specific activity of the (Na+K+)-ATPase was 2.3-fold higher in endothelium than in epithelium. Calculation of total enzyme activity revealed a 6.1-fold higher content of (Na+K+)-ATPase in the epithelium.

In the epithelium a 7-fold enrichment of (Na+K+)-ATPase compared to the homogenate was obtained in the 150–1500×g av fraction. Maximum enrichment in the endothelium was 3.5-fold and was achieved in the 1500–2500×g av fraction. Both fractions showed, however, the same specific activity.

The pH-optimum of (Na+K+)-ATPase in the 150–1500×g av fraction ranged from 8.0–8.2 in both epithelium and endothelium.

In the epithelial 150–1500×g av fraction the apparentK m-values were 4.0 mM for Na+, 2.8 mM for K+ and 0.12 mM for Mg2+ · ATP in equimolar concentrations.

The inhibition constant of epithelial (Na+K+)-ATPase for ouabain was determined asK i=3.3×10−7 M.

The present data support the view that control of corneal hydration in man is a function of both endothelium and epithelium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bonting, S. L.: Sodium-potassium activated adenosine triphosphatase and cation transport. In: Membranes and ion transport, Vol. I (E. E. Bittar, ed.), pp. 257–363. London: Wiley-Interscience 1970

    Google Scholar 

  2. Bonting, S. L., Canady, M. R.: Na−K activated adenosine triphosphatase and sodium transport in toad bladder. Amer. J. Physiol.207, 1005–1009 (1964)

    Google Scholar 

  3. Bonting, S. L., Simon, K. A., Hawkins, N. M.: Studies on sodium-potassium-activated adenosine triphosphatase. Arch. Biochem. Biophys.95, 416–423 (1961)

    Google Scholar 

  4. Davson, H.: The hydration of the cornea. Biochem. J.59, 25–48 (1955)

    Google Scholar 

  5. Dikstein, S., Maurice, D. M.: The active control of corneal hydration. Israel J med. Sci.8, 1523–1530 (1972)

    Google Scholar 

  6. Donn A.: The movement of ions and water across the cornea. Invest. Ophthal.1, 170–177 (1962)

    Google Scholar 

  7. Donn, A., Maurice, D. M., Mills, N. L.: Studies in the living cornea in vitro. II. The active transport of sodium across the epithelium. Arch. Ophthal.62, 748–757 (1959)

    Google Scholar 

  8. Dryer, R. L., Tammes, A. R., Routh, J. I.: The determination of phosphorus and phosphatase with N-phenyl-p-phenylenediamine. J. biol. Chem.225, 177–183 (1957)

    Google Scholar 

  9. Ebel, H., Aulbert, E., Merker, H. J.: Isolation of the basal and lateral plasma membranes of rat kidney tubule cells. Biochim. biophys. Acta (Amst.)433, 531–546 (1976)

    Google Scholar 

  10. Ebel, H., DeSanto, N. G., Hierholzer, K.: Plasma cell membranes of the rat kidney. Pflügers Arch.324, 1–25 (1971)

    Google Scholar 

  11. Fischbarg, J., Lim, J. J.: Role of cations, anions and carbonic anhydrase in fluid transport across rabbit corneal endothelium. J. Physiol. (Lond.)241, 647–675 (1974)

    Google Scholar 

  12. Fischer, F., Schmitz, L., Hoff, W., Liegl, O., Wiederholt, M.: Influence of pH on potential difference, short circuit current and isotopic flux of sodium and chloride in the isolated human cornea. Pflügers Arch.339, R65 (1973)

    Google Scholar 

  13. Green, K.: Ion transport in isolated cornea of the rabbit. Amer. J. Physiol.209, 1311–1316 (1965)

    Google Scholar 

  14. Green, K.: Dependence of corneal thickness on epithelial ion transport and stromal sodium. Amer. J. Physiol.217, 1169–1177 (1969)

    Google Scholar 

  15. Green, K., Ottori, T.: Studies on corneal physiology in vitro. Exp. Eye Res9, 268–277 (1970)

    Google Scholar 

  16. Harris, J. E., Nordquist, L. R.: The hydration of the cornea. I. The transport of water from the cornea. Amer. J. Ophthal.40, 100–110 (1955)

    Google Scholar 

  17. Hilden, S., Hokin, L.: Active potassium transport coupled to active sodium transport in vesicles reconstituted from purified sodium and potassium ion-activated adenosine triphosphatase from the rectal gland of Squalus acanthias. J. biol. Chem.250, 6296–6303 (1975)

    Google Scholar 

  18. Hodson, S.: The regulation of corneal hydration by a salt pump requiring the presence of sodium and bicarbonate ions. J. Physiol. (Lond.)236, 271–302 (1974)

    Google Scholar 

  19. Kinne, R., Kinne-Saffran, E.: Isolierung und enzymatische Charakterisierung einer Bürstensaumfraktion der Rattenniere. Pflügers Arch.308, 1–15 (1969)

    Google Scholar 

  20. Kinne-Saffran, E., Kinne, R.: Presence of bicarbonate stimulated ATPase in the brush border microvillus membranes of the proximal tubule. Proc. Soc. exp. Biol. (N.Y.)146, 751–753 (1974)

    Google Scholar 

  21. Klyce, S. D.: Transport of Na, Cl, and water by the rabbit corneal epithelium at resting potential. Amer. J. Physiol.228, 1446–1452 (1975)

    Google Scholar 

  22. Lambert, B., Donn, A.: The effect of ouabain on active transport of sodium in the cornea. Arch. Ophthal.72, 525–528 (1964)

    Google Scholar 

  23. Langham, M. E., Kostelnik, M.: The effect of ouabain on the hydration and the adenosine triphosphatase activity of the cornea. J. Pharmacol. exp. Ther.150, 398–405 (1965)

    Google Scholar 

  24. Leopold, I. H., Harris, J. E.: In: Biology data book, Vol. III (P. L. Altman and D. S. Dittmer, eds.), pp. 2032–2040. Bethesda, Maryland: Federation of American Societies for Experimental Biology, 1974

    Google Scholar 

  25. Leuenberger, P. M., Novikoff, A. B.: Localization of transport adenosine triphosphatase in rat cornea. J. Cell Biol.60, 721–731 (1974)

    Google Scholar 

  26. Lichey, H. J., Fischer, F., Wiederholt, M.: Intracellular potentials in the isolated human cornea. Pflügers Arch.346, 351–360 (1973)

    Google Scholar 

  27. Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurements with the Folin phenol reagent. J. biol. Chem.193, 265–275 (1951)

    Google Scholar 

  28. Maurice, D. M.: The location of the fluid pump in the cornea. J. Physiol. (Lond.)221: 43–54 (1972)

    Google Scholar 

  29. Mishima, S., Hayakawa, M.: The function of the corneal endothelium in relation to corneal dehydration and nutrition. Israel J. med. Sci.8, 1507–1518 (1972)

    Google Scholar 

  30. Mishima, S., Kudo, T.: In vitro incubation of rabbit cornea. Invest. Ophthal.6, 329–339 (1967)

    Google Scholar 

  31. Nechay, B. R., Sarles, H. E., Remmers, A. R., Jr., Fish, J. C., Beathard, G. A., Nelson, J. A., Lindley, J. D., Lerman, M. J., Contreras, R. R.: Characteristics and distribution of Na++K+ ATPase in human kidney. Fed. Proc.30, 332 (1971)

    Google Scholar 

  32. Otori, T.: Electrolyte content of the rabbit corneal stroma. Exp. Eye Res.6, 356–367 (1967)

    Google Scholar 

  33. Riley, M. V.: The role of the epithelium in control of corneal hydration. Exp. Eye Res.12, 128–137 (1971)

    Google Scholar 

  34. Rogers, T.: Levels of (Na+K+)-activated and Mg2+-activated ATPase activity in bovine and feline corneal endothelium and epithelium. Biochem. biophys. Acta (Amst.)163, 50–56 (1968)

    Google Scholar 

  35. Ruf, W., Ebel, H.: (Na+K+)-activated ATPase in human cornea. Pflügers Arch.362, R13 (1976)

    Google Scholar 

  36. Schwartz, A., Lindenmayer, G. E., Allen, J. C.: The sodiumpotassium adenosine triphosphatase: Pharmacological, physiological and biochemical aspects. Pharmacol. Rev.27, 3–134 (1975)

    Google Scholar 

  37. Skou, J. Ch.: Preparation from mammalian brain and kidney of the enzyme system involved in active transport of Na+ and K+. Biochim. biophys. Acta (Amst.)58, 314–325 (1962)

    Google Scholar 

  38. Skou, J. Ch.: Enzymatic basis for active transport of Na+ and K+ across the cell membrane. Physiol. Rev.45, 596–617 (1965)

    Google Scholar 

  39. Tervo, T., Palkama, A.: Electron microscopic localization of adenosine triphosphatase (NaK-ATPase) activity in the rat cornea. Exp. Eye Res.21, 269–279 (1975)

    Google Scholar 

  40. Trenberth, S. M., Mishima, S.: The effect of ouabain on the rabbit corneal endothelium. Invest. Ophthal.7, 44–52 (1968)

    Google Scholar 

  41. Wald, H., Gutman, Y., Czeczkes, W.: Comparison of microsomal ATPase in the cortex, medulla and papilla of the rat kidney. Pflügers Arch.352, 47–59 (1974)

    Google Scholar 

  42. Zadunaisky, J. A.: Active transport of chloride in frog cornea. Amer. J. Physiol.211, 506–512 (1966)

    Google Scholar 

  43. Zadunaisky, J. A.: Sodium activation of chloride transport in the frog cornea. Biochim. biophys. Acta (Amst.)282, 255–257 (1972)

    Google Scholar 

  44. Zadunaisky, J. A., Lande, M. A.: Active chloride transport and the control of corneal transparency. Amer. J. Physiol.221, 1837–1844 (1971)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruf, W., Ebel, H. & Hristova, M. (Na+K+)-activated ATPase in human cornea. Pflugers Arch. 366, 203–210 (1976). https://doi.org/10.1007/BF00585879

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00585879

Key words

Navigation