Skip to main content
Log in

Effect of contraction on lymphatic, venous, and tissue electrolytes and metabolites in rabbit skeletal muscle

  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Summary

The effect of muscle contraction on lymphatic and plasma [K+], [Na+], [Ca2+], [Mg2+], [Cl], [Pi], [lactate] ([Lac]); [creatine] ([Cr]), ideal osmolality (OSM), and [protein] was evaluated in femoral venous blood and lymph specimens sampled from the calf muscles of rabbits before, in the course of, and after contractions. In addition, total [K+], [Na+], [Ca2+], [Mg2+], [Cl], and [H2O] were analyzed in the muscle tissue. To facilitate lymph sampling both hind limbs were passively flexed and extended, in imitation of natural running movements, by an electrically driven crank. The muscles of one side also performed superimposed rhythmic isotonic contractions. Before contractions, lymphatic [K+], [Na+], [Ca2+], [Mg2+], [Lac], [Cr], and OSM did not significantly differ from corresponding femoral venous concentrations, [Cl], and [Pi] were significantly higher, [protein] significantly lower in the lymph than in the plasma. During contractions lymphatic [K+], OSM, [Lac], and [Pi] were raised significantly more in the lymph compared with the plasma concentrations. [Na+], [Cl], [Ca2+], and [Mg2+] showed only small changes in the course of contractions and thereafter, and they were altered in a similar way in the lymph and plasma. It was suggested that lymphatic and interstitial concentrations were in equilibrium. Comparing inactive with active muscles, the latter lost K+ but gained Na+, Cl, and H2O, whereas minimal changes occurred in the [Ca2+] and [Mg2+]. The changes were discussed in connection with the hypothesis that electrolyte shifts might be involved in the activation of the muscular non-proprioceptive interstitial nerve endings which appear to play a role in reflexogenic cardiovascular and respiratory control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Areskog, N.-H., Arturson, G., Grotte, G.: Heart lymph: Electrolyte composition and changes induced by cardiac glycosides. Biochem. Pharmacol.14, 783–787 (1965)

    Google Scholar 

  2. Bach, C., Lewis, G. P.: Lymph flow and lymph protein concentration in the skin and muscle of the rabbit hind-limb. J. Physiol. (Lond.)235, 477–492 (1973)

    Google Scholar 

  3. Bernt, E., Bergmeyer, H. U., Möllering, H.: Creatin. In: Methoden der enzymatischen Analyse, Vol. II (H. U. Bergmeyer, ed.), pp. 1724–1728. Weinheim/Bergstr.: Verlag Chemie 1970

    Google Scholar 

  4. Casley-Smith, J. R., Florey, H. W.: The structure of normal small lymphatics. Quart. J. exp. Physiol.46, 101–106 (1961)

    Google Scholar 

  5. Conway, E. J.: Nature and significance of concentration relations of potassium and sodium ions in skeletal muscle. Physiol. Rev.37, 84–131 (1957)

    Google Scholar 

  6. Documenta Geigy Wissenschaftliche Tabellen, 6. Auflage. Basel 1960

  7. Gebert, G.: Messung der K+- und Na+-Aktivität mit Mikro-Glaselektroden im Extracellulärraum des Kaninchenmuskels bei Muskelarbeit. Pflügers Arch.331, 204–214 (1972)

    Google Scholar 

  8. Graham, J. A., Lamb, J. F., Linton, A. L.: Measurement of body water and intracellular electrolytes by means of muscle biopsy. Lancet1967 II, 1172–1176

  9. Haddy, F. J., Scott, J. B.: Metabolically linked vasoactive chemicals in local regulation of blood flow. Physiol. Rev.48, 688–707 (1968)

    Google Scholar 

  10. Haljamäe, H., Linde, A., Amundson, B.: Comparative analyses of capsular fluid and interstitial fluid. Amer. J. Physiol.227, 1199–1205 (1974)

    Google Scholar 

  11. Hilton, S. M.: Evidence for inorganic phosphate as the initiator of post-contraction hyperaemia in skeletal muscle. Scand. J. clin. Lab. Invest.29, 135–138 (1972)

    Google Scholar 

  12. Hnik, P., Hudlická, O., Kûcera, J., Payne, R.: Activation of muscle afferents by non-proprioceptive stimuli. Amer. J. Physiol.217, 1451–1457 (1969)

    Google Scholar 

  13. Hník, P., Holas, M., Krekule, I., Kříž, N., Mejsnar, J., Smieško, V., Újec, E., Vyskočil, F.: Work-induced potassium changes in skeletal muscle and effluent venous blood assessed by liquid ion-exchanger microelectrodes. Pflügers Arch.362, 85–94 (1976)

    Google Scholar 

  14. Hohorst, H.-J.: L-(+)-Lactat. Bestimmung mit Lactat-Dehydrogenase und NAD. In: Methoden der enzymatischen Analyse, Vol. II (H. U. Bergmeyer, ed.), pp. 1425–1429. Weinheim/Bergstr.: Verlag Chemie 1970

    Google Scholar 

  15. Kjellmer, I.: The role of potassium ions in exercise hyperaemia. Med. exp. (Basel)5, 56–60 (1961)

    Google Scholar 

  16. Korneliussen, H.: Fenestrated blood capillaries and lymphatic capillaries in rat skeletal muscle. Cell. Tiss. Res.163, 169–174 (1975)

    Google Scholar 

  17. Lasser, R. P., Schoenfeld, M. R., Allen, D. F., Friedberg, C. K.: Reflex circulatory effects elicited by hypertonic and hypotonic solutions injected into femoral and brachial arteries of dogs. Circulat. Res.8, 913–919 (1960)

    Google Scholar 

  18. Leak, V. L.: Studies on the permeability of lymphatic capillaries. J. Cell. Biol.50, 300–323 (1971)

    Google Scholar 

  19. Liu, C. T., Huggins, R. A., Hoff, H. E.: Mechanisms of intraarterial K+-induced cardiovascular and respiratory responses. Amer. J. Physiol.217, 969–973 (1969)

    Google Scholar 

  20. Lundvall, J., Mellander, S., White, T.: Hyperosmolality and vasodilatation in human skeletal muscle. Acta physiol. scand.77, 224–233 (1969)

    Google Scholar 

  21. Manery, J. F.: Water and electrolyte metabolism. Physiol. Rev.54, 334–417 (1954)

    Google Scholar 

  22. Mayerson, H. S., Patterson, R. M., McKee, A., LeBrie, S. J., Mayerson, P.: Permeability of lymphatic vessels. Amer. J. Physiol.203, 98–106 (1962)

    Google Scholar 

  23. McCloskey, D. I., Mitchell, J. H.: Reflex cardiovascular and respiratory responses originating in exercising muscle. J. Physiol. (Lond.)224, 173–186 (1972)

    Google Scholar 

  24. Renkin, E. M.: Transport of potassium-42 from blood to tissue in isolated mammalian skeletal muscles. Amer. J. Physiol.197, 1205–1210 (1959)

    Google Scholar 

  25. Rusznyák, I., Földi, M., Szabó, G.: Lymphologie. Physiologie und Pathologie der Lymphgefäße und des Lymphkreislaufes. 2. Aufl. Stuttgart: G. Fischer 1969

    Google Scholar 

  26. Stacey, M. J.: Free nerve endings in skeletal muscle of the cat. J. Anat. (Lond.)105, 231–254 (1969)

    Google Scholar 

  27. Stegemann, J., Ulmer, H.-V., Böning, D.: Auslösung peripherer neurogener Atmungs- und Kreislaufantriebe durch Erhöhung des CO2-Druckes in größeren Muskelgruppen. Pflügers Arch. ges. Physiol.293, 155–164 (1967)

    Google Scholar 

  28. Steinhagen, C., Hirche, Hj., Hosselmann, I., Manthey, J., Nestle, H. W., Bovenkamp, U.: Interstitial pH of the isolated working skeletal muscle during acid-base disturbances. Pflügers Arch.355, R122 (1975)

    Google Scholar 

  29. Stingl, J., Stembera, O.: Distribution and ultrastructure of the initial lymphatics of some skeletal muscles in the rat. Lymphology7, 159–168 (1974)

    Google Scholar 

  30. Taylor, A. E., Gibson, W. H., Granger, H. J., Guyton, A. C.: The interaction between intracapillary and tissue forces in the overall regulation of interstitial fluid volume. Lymphology6, 192–208 (1973)

    Google Scholar 

  31. Tibes, U., Hemmer, B., Schweigart, U., Böning, D., Fotescu, D.: Exercise acidosis as cause of electrolyte changes in femoral venous blood of trained and untrained man. Pflügers Arch.347, 145–158 (1974)

    Google Scholar 

  32. Tibes, U., Hemmer, B.: Peripheral drive on circulatory and ventilatory centers from muscular metabolic receptors. Pflügers Arch.347, R47 (1974)

    Google Scholar 

  33. Tibes, U., Haberkorn, E., Hemmer, B. with technical assistance of M. Kötter and B. Arndt: Changes of interstitial and venous [K+], [Na+], [Ca2+], [Mg2+], [Cl], [PO4], osmolality (OSM), [Lactate] ([Lac]), [creatine] ([Cr]), and muscle electrolytes due to muscular contractions. Pflügers Arch.359, R72 (1975)

    Google Scholar 

  34. Tibes, U., Hemmer, B., Böning, D., Schweigart, U.: Relationships of femoral venous [K+], [H+], PO 2, osmolality, and [orthophosphate] with heart rate, ventilation, and leg blood flow during bicycle exercise in athletes and nonathletes. Europ. J. appl. Physiol.35, 201–214 (1976)

    Google Scholar 

  35. Wildenthal, K., Mierzwiak, D. S., Skinner, N. S. Jr., Mitchell, J. H.: Potassium-induced cardiovascular and ventilatory reflexes from the dog hindlimb. Amer. J. Physiol.215, 542–548 (1968)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

A preliminary report of this work has been given elsewhere [33]

Supported by Deutsche Forschungsgemeinschaft

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tibes, U., Haberkorn-Butendeich, E. & Hammersen, F. Effect of contraction on lymphatic, venous, and tissue electrolytes and metabolites in rabbit skeletal muscle. Pflugers Arch. 368, 195–202 (1977). https://doi.org/10.1007/BF00585196

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00585196

Key words

Navigation