Skip to main content
Log in

Effect of Dynamic and Static Load on the Concentration of Myokines in the Blood Plasma and Content of Sodium and Potassium in Mouse Skeletal Muscles

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Modulation of cytokine production by physical activity is of considerable interest, since it might be a promising strategy for correcting metabolic processes at both cellular and systemic levels. The content of IL-6, IL-8, and IL-15 in the plasma and the concentration of monovalent cations in the skeletal muscles of trained and untrained mice were studied at different periods after static and dynamic exercises. Dynamic loads caused an increase in the IL-6 content and decrease in the IL-15 content in the plasma of untrained mice, but produced no effect on the concentration of IL-8. In trained mice, the effect of a single load on the concentration of IL-6 and IL-15 in the plasma was enhanced, while the concentration of IL-8 decreased. Static loads produced a similar, but more pronounced effect on the plasma concentration of IL-6 and IL-15 compared the dynamic exercises; however, the concentration of IL-8 in response to the static exercise increased significantly. Prior training reinforced the described response for all the myokines studied. Dynamic load (swimming) increased the intracellular content of sodium but decreased the content of potassium in the mouse musculus soleus. Similar response was observed after the static load (grid hanging) in the musculus biceps; but no correlation of this response with the prior training was found. Possible mechanisms involved in the regulation of cytokine secretion after exercise are discussed, including triggering of gene transcription in response to changes in the [Na+]i/[K+]I ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Abbreviations

EPS:

electric pulse stimulation

HIF:

hypoxia-inducible factor

IL:

interleukin

References

  1. Frontera, W. R., and Ochala, J. (2015) Skeletal muscle: a brief review of structure and function, Calcif. Tissue Int., 96, 183-195, https://doi.org/10.1007/s00223-014-9915-y.

    Article  CAS  PubMed  Google Scholar 

  2. Amano, Y., Nonaka, Y., Takeda, R., Kano, Y., and Hoshino, D. (2020) Effects of electrical stimulation-induced resistance exercise training on white and brown adipose tissues and plasma meteorin-like concentration in rats, Physiol. Rep., 16, e14540, https://doi.org/10.14814/phy2.14540.

    Article  CAS  Google Scholar 

  3. Drenth, J. P., Van Uum, S. M, Van Deuren, M., Pesman, G., Van der Ven-Jongekrijg, J., and Van der Meer, J. M. (1985) Endurance run increases circulation IL-6 and IL-1ra but downregulates ex vivo TNF-alpha and IL-1beta production, J. Appl. Physiol., 79, 1497-1503, https://doi.org/10.1152/JAPPL.1995.79.5.1497.

    Article  Google Scholar 

  4. Romagnoli, C., Zonefrati, R., and Sharma, P. (2020) Characterization of skeletal muscle endocrine control in an in vitro model of myogen, Calcif. Tissue Int., 107, 18-30, https://doi.org/10.1007/s00223-020-00678-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Barbalho, S. M., Flato, U. A. P., Tofano, R. J., de Alvares Goulart, R., Guiguer, E. L., et al. (2020) Physical exercise and myokines, Int. J. Molec. Sci., 21, 3607, https://doi.org/10.3390/ijms21103607.

    Article  CAS  Google Scholar 

  6. Steensberg, A., van Hall, G., Osada, T., Sacchetti, M., Saltin, B., and Klarlund Pedersen, B. (2000) Production of interleukin-6 in contracting human skeletal muscles can account for the exercise-induced increase in plasma interleukin-6, J. Physiol., 529, 237-242, https://doi.org/10.1111/j.1469-7793.2000.00237.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Keller, C., Steensberg, A., Pilegaard, H., Osada, T., Saltin, B., et al. (2001) Transcriptional activation of the IL-6 gene in human contracting skeletal muscle: influence of muscle glycogen content, FASEB J., 14, 2748-2750, https://doi.org/10.1096/fj.01-0507fje.

    Article  CAS  Google Scholar 

  8. Nedachi, T., Fujita, H., and Kanzaki, M. (2008) Contractile C2C12 myotube model for studying exercise-inducible responses in skeletal muscle, Am. J. Physiol. Endocrinol. Metab., 295, E1191-E1204, https://doi.org/10.1152/ajpendo.90280.2008.

    Article  CAS  PubMed  Google Scholar 

  9. Lambernd, S., Taube, A., Schober, A., Platzbecker, B., Görgens, S. W., et al. (2012) Contractile activity of human skeletal muscle cells prevents insulin resistance by inhibiting pro-inflammatory signaling pathways, Diabetologia, 55, 1128-1139, https://doi.org/10.1007/s00125-012-2454-z.

    Article  CAS  PubMed  Google Scholar 

  10. Nikolic, N., Bakke, S. S., Kase, E.T., Rudberg, I., Halle, I. F., et al. (2012) Electrical pulse stimulation of cultured human skeletal muscle cells as an in vitro model of exercise, PLoS One, 7, e33203, https://doi.org/10.1371/journal.pone.0033203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Scheler, M., Irmler, M., Lehr, S., Hartwig, S., Staiger, H., et al. (2013) Cytokine response of primary human myotubes in an in vitro exercise model, Am. J. Physiol. Cell. Physiol., 305, C877-C886, https://doi.org/10.1152/ajpcell.00043.2013.

    Article  CAS  PubMed  Google Scholar 

  12. Ahn, N., and Kim, K. (2020) Effects of aerobic and resistance exercise on myokines in high fat diet-induced middle-aged obese rats, Int. J. Environ. Res. Public Health, 17, 2685, https://doi.org/10.3390/ijerph17082685.

    Article  CAS  PubMed Central  Google Scholar 

  13. Pedersen, B. K., and Febbraio, M. A. (2008) Muscle as an endocrine organ: focus on muscle-derived interleukin-6, Physiol. Rev., 88, 1379-1406, https://doi.org/10.1152/physrev.90100.2007.

    Article  CAS  PubMed  Google Scholar 

  14. Iizuka, K., Machida, T., and Hirafuji, M. (2014) Skeletal muscle is an endocrine organ, J. Pharmacol. Sci., 125, 125-131, https://doi.org/10.1254/jphs.14r02cp.

    Article  CAS  PubMed  Google Scholar 

  15. Pedersen, B. K., and Febbraio, M. A. (2012) Muscles, exercise and obesity: skeletal muscle as a secetory organ, Nat. Rev. Endocrinol., 8, 457-465, https://doi.org/10.1038/nrendo.2012.49.

    Article  CAS  PubMed  Google Scholar 

  16. Laurens, C., Bergouignan, A., and Moro, C. (2020) Exercise-released myokines in the control of energy metabolism, Front. Physiol., 11, 91, https://doi.org/10.3389/fphys.2020.00091.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kapilevich, L. V., Zakharova, A. N., Kabachkova, A. V., Kironenko, T. A., and Orlov, S. N. (2017) Dynamic and static exercises differentially affect plasma cytokine content in elite endurance- and strength-trained athletes and untrained volunteers, Front. Physiol., 8, 35, https://doi.org/10.3389/fphys.2017.00035.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kapilevich, L. V., Kironenko, T. A., Zakharova, A. N., Kabachkova, A. V., and Orlov, S. N. (2017) Level of interleukins IL-6 and IL-15 in blood plasma of mice after forced swimming test, Bull. Exp. Biol. Med., 163, 10-13, https://doi.org/10.1007/s10517-017-3725-y.

    Article  CAS  PubMed  Google Scholar 

  19. Jurkat-Rott, K., Fauler, M., and Lehmann-Horn, F. (2006) Ion channels and ion transporters of the transverse tubular system of skeletal muscle, J. Muscle Res. Cell Motil., 27, 275-290, https://doi.org/10.1007/s10974-006-9088-z.

    Article  PubMed  Google Scholar 

  20. Sejersted, O. M., and Sjogaard, G. (2000) Dynamics and consequences of potassium shifts in skeletal muscle and heart during exercise, Physiol. Rev., 80, 1411-1481, https://doi.org/10.1152/physrev.2000.80.4.1411.

    Article  CAS  PubMed  Google Scholar 

  21. McDonough, A. A., Thompson, C. B., and Youn, J. H. (2002) Skeletal muscle regulates extracellular potassium, Am. J. Physio.l Ren. Physiol., 282, F967-F974, https://doi.org/10.1152/ajprenal.00360.2001.

    Article  CAS  Google Scholar 

  22. McKenna, M. J., Bangsbo, J., and Renaud, J. M. (2008) Muscle K+, Na+, and Cl disturbances and Na+-K+ pump inactivation: implications for fatigue, J. Appl. Phys., 104, 288-295, https://doi.org/10.1152/japplphysiol.01037.2007.

    Article  CAS  Google Scholar 

  23. Murphy, K. T., Nielsen, O. B., and Clausen, T. (2008) Analysis of exerciseinduced Na+-K+ exchange in rat skeletal muscle, Exp. Physiol., 93, 1249-1262, https://doi.org/10.1113/expphysiol.2008.042457.

    Article  CAS  PubMed  Google Scholar 

  24. Cairns, S. P., and Lindinger, M. I. (2008) Do multiple ionic interactions contribute to skeletal muscle fatigue? J. Physiol., 586, 4039-4054, https://doi.org/10.1113/jphysiol.2008.155424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Orlov, S. N., Koltsova, S. V., Kapilevich, L. V., Gusakova, S. V., and Dulin, N. O. (2015) KCC1 and NKCC2: the pathogenetic role of cation-chloride cotransporters in hypertension, Genes Dis., 2, 186-196, https://doi.org/10.1016/j.gendis.2015.02.007.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Danilov, K., Sidorenko, S., Milovanova, K., Klimanova, E., Kapilevich, L., and Orlov, S. (2017) Electrical pulse stimulation decreases electrochemical Na+ and K+ gradients in C2C12 myotubes, Biochem. Biophys. Res. Commun., 493, 875-878, https://doi.org/10.1016/j.bbrc.2017.09.133.

    Article  CAS  PubMed  Google Scholar 

  27. Farmawati, A., Kitajima, Y., Nedachi, T., Sato, M., Kanzaki, M., and Nagatomi, R. (2013) Characterization of contraction-induced IL-6 up-regulation using contractile C2C12 myotubes, Endocr. J., 60, 137-147, https://doi.org/10.1507/endocrj.ej12-0316.

    Article  CAS  PubMed  Google Scholar 

  28. Smolyaninova, L. V., Koltsova, S. V., Sidorenko, S. V., and Orlov, S. N. (2017) Augmented gene expression triggered by Na+,K+-ATPase inhibition: role of Ca2+i-mediated and -independent excitation-transcription coupling, Cell Calcium., 68, 5-13, https://doi.org/10.1016/j.ceca.2017.10.002.

    Article  CAS  PubMed  Google Scholar 

  29. Sidorenko, S., Klimanova, E., Milovanova, K., Lopina, O. D., Kapilevich, L. V., et al. (2018) Transcriptomic changes in C2C12 myotubes triggered by electrical stimulation: role of Ca2+i-mediated and Ca2+i-independent signaling and elevated [Na+]i/[K+]i ratio, Cell Calcium, 76, 72-86, https://doi.org/10.1016/j.ceca.2018.09.007.

    Article  CAS  PubMed  Google Scholar 

  30. Kapilevich, L. V., Kironenko, T. A., Zaharova, A. N., Kotelevtsev, Y. V., Dulin, N. O., and Orlov, S. N. (2015) Skeletal muscle as an endocrine organ: role of [Na+]i/[K+]i-mediated excitation-transcription coupling, Genes Dis., 2, 328-336, https://doi.org/10.1016/j.gendis.2015.10.001.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lauritzen, H. P., Brandauer, J., Schjerling, P., Koh, H. J., Treebak, J. T., et al. (2013) Contraction and AICAR stimulate IL-6 vesicle depletion from skeletal muscle fibers in vivo, Diabetes, 62, 3081-3092, https://doi.org/10.2337/db12-1261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kapilevich, L. V., Milovanova, K. G., Sidorenko, S. V., Fedorov, D. A., Kironenko, T. A., et al. (2020) Effect of dynamic and static loads on the concentration of sodium and potassium in murine skeletal muscles, Bull. Exp. Biol. Med., 169, 1-4, https://doi.org/10.1007/s10517-020-04811-y.

    Article  CAS  PubMed  Google Scholar 

  33. Klimanova, E. A., Sidorenko, S. V., Tverskoi, A. M., Shiyan, A. A., Smolyaninova, L. V., et al. (2019) Search for intracellular sensors involved in the functioning of monovalent cations as secondary messengers, Biochemistry (Moscow), 84, 1280-1295, https://doi.org/10.1134/S0006297919110063.

    Article  CAS  Google Scholar 

  34. Shiyan, A. A., Sidorenko, S. V., Fedorov, D., Klimanova, E. A., Smolyaninova, L. V., et al. (2019) Elevation of intracellular Na+ contributes to expression of early response genes triggered by endothelial cell shrinkage, Cell. Physiol. Biochem., 53, 638-647, https://doi.org/10.33594/000000162.

    Article  CAS  PubMed  Google Scholar 

  35. Smolyaninova, L. V., Shiyan, A. A., Kapilevich, L. V., Lopachev, A. V., Fedorova, T. N., et al. (2019) Transcriptomic changes triggered by ouabain in rat cerebellum granule cells: role of α3- and α1-Na+,K+-ATPase-mediated signaling, PLoS One, 14, e0222767, https://doi.org/10.1371/journal.pone.0222767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lukaszuk, B., Bialuk, I., Górski, J., Zajączkiewicz, M., Winnicka, M. M., and Chabowski, A. (2012) A single bout of exercise increases the expression of glucose but not fatty acid transporters in skeletal muscle of IL-6 KO mice, Lipids, 47, 763-772, https://doi.org/10.1007/s11745-012-3678-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bagmetova, V. V., Krivitskaya, A. N., Tyurenkov, I. N., Berestovitskaya, V. M., and Vasilyeva, O. S. (2012) The influence of fenibut and its salt with succinic acid on animals’ resistance to forced dynamic and static physical loads, Fundament. Res., 4, 243-246.

    Google Scholar 

  38. Wasinski, F., Bacurau, R. F., Moraes, M. R., Haro, A. S., Moraes-Vieira, P. M., et al. (2013) Exercise and caloric restriction alter the immune system of mice submitted to a high-fat diet, Mediators Inflam., 2013, 395672, https://doi.org/10.1155/2013/395672.

    Article  CAS  Google Scholar 

  39. Karkishchenko, V. N., Kapanadze, G. D., Dengina, S. E., and Stankova, N. V. (2011) Development of technique of assessment of physical endurance of small laboratory animals for investigation of adaptogenic activity of some therapeutic drugs, Biomeditsina, 1, 72-74.

    Google Scholar 

  40. Gundersen, K. (2011) Excitation-transcription coupling in skeletal muscle: the molecular pathways of exercise, Biol. Rev. Camb. Philos. Soc., 86, 564-600, https://doi.org/10.1111/j.1469-185X.2010.00161.x.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Fisher, C. P. (2006) Interleikin-6 in acute exercise and training: what is the biological relevance? Exercise Immunol. Rev., 12, 6-33.

    Google Scholar 

  42. Peake, J. M., Gatta, P. D., Suzuki, K., and Nieman, D. C. (2015) Cytokine expression and secretion by skeletal muscle cells: regulatory mechanisms and exercise effects, Exercise Immunol. Rev., 21, 8-25.

    Google Scholar 

  43. Fitts, R. H., and Widrick, J. J. (1996) Muscle mechanics: adaptations with exercise-training, Exerc. Sport. Sci. Rev., 24, 427-473.

    Article  CAS  Google Scholar 

  44. Dyakova, E. Y., Kapilevich, L. V., Shylko, V. G., Popov, S. V., and Anfinogenova, Y. (2015) Physical exercise associated with NO production: signaling pathways and significance in health and disease, Front. Cell Dev. Biol., 3, 19, https://doi.org/10.3389/fcell.2015.00019.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Raue, U., Trappe, T. A., Estrem, S. T., Qian, H-R., Helvering, L. M., et al. (2012) Transcriptomic signature of resistance exercise adaptations: mixed muscle and fiber type specific profiles in young and old adults, J. Appl. Physiol., 112, 1625-1636, https://doi.org/10.1152/japplphysiol.00435.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kapilevich, L. V., D’Yakova, E. Yu., Nosarev, A. V., Zaitseva, T. N., Petlina, Z. R., et al. (2010) Effect of nanodisperse ferrite cobalt (CoFe2O4) particles on contractile reactions in guinea pigs airways, Bull. Exp. Biol. Med., 149, 70-72.

    Article  CAS  Google Scholar 

  47. Kovalev, I. V., Baskakov, M. B., Medvedev, M. A., Minochenko, I. L., Kilin, A. A., et al. (2007) Na+,K+,2Cl(–)-cotransport and chloride permeability of the cell membrane in mezaton and histamine regulation of electrical and contractile activity in smooth muscle cells from the guinea pig ureter, Ros. Fiziol. Zh. Im. I.M. Sechenova, 93, 306-317.

    CAS  Google Scholar 

  48. Ke, Q., and Costa, M. (2006) Hypoxia-inducible factor-1 (HIF-1), Mol. Pharmacol., 70, 1469-1480, https://doi.org/10.1124/mol.106.027029.

    Article  CAS  PubMed  Google Scholar 

  49. Rodriguez-Miguelez, P., Lima-Cabello, E., Martinez-Florez, S., Almar, M., Cuevas, M. J., and González-Gallego, J. (2015) Hypoxia-inducible factor-1 modulates the expression of vascular endothelial growth factor and endothelial nitric oxide synthase induced by eccentric exercise, J. Appl. Physiol., 118, 1075-1083, https://doi.org/10.1152/japplphysiol.00780.2014.

    Article  CAS  PubMed  Google Scholar 

  50. Koltsova, S. V., Trushina, Y., Haloui, M., Akimova, O. A., Tremblay, J., et al. (2012) Ubiquitous [Na+]i/[K+]i-sensitive transcriptome in mammalian cells: evidence for [Ca2+]i-independent excitation-transcription coupling, PLoS One, 7, e38032, https://doi.org/10.1371/journal.pone.0038032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Popov, D. V., Lysenko, E. A., Bokov, R. O., Volodina, M. A., Kurochkina, N. S., et al. (2018) Effect of aerobic training on baseline expression of signaling and respiratory proteins in human skeletal muscle, Physiol. Rep., 6, e13868, https://doi.org/10.14814/phy2.13868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Popov, D. V., Makhnovskii, P. A., Shagimardanova, E. I., and Volodina, M. A. (2019) Contractile activity-specific transcriptome response to acute endurance exercise and training in human skeletal muscle, Am. J. Physiol. Endocrinol. Metab., 316, E605-E614, https://doi.org/10.1152/ajpendo.00449.2018.

    Article  CAS  PubMed  Google Scholar 

  53. Koltsova, S. V., Tremblay, J., Hamet, P., and Orlov, S. N. (2015) Transcriptomic changes in Ca2+-depleted cells: role of elevated intracellular [Na+]/[K+] ratio, Cell Calcium, 58, 317-324, https://doi.org/10.1016/j.ceca.2015.06.009.

    Article  CAS  PubMed  Google Scholar 

  54. Koltsova, S. V., Shilov, B., Burulina, J. G., Akimova, O. A., Mounsif, H., et al. (2014) Transcriptomic changes triggered by hypoxia: evidence for HIF-1α-independent, [Na+]i/[K+]i-mediated excitation-transcription coupling, PLoS One, 9, e110597, https://doi.org/10.1371/journal.pone.0110597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Orlov, S. N., and Hamet, P. (2015) Salt and gene expression: evidence for [Na+]i/[K+]i-mediated signaling pathways, Pflugers Arch., 467, 489-498, https://doi.org/10.1007/s00424-014-1650-8.

    Article  CAS  PubMed  Google Scholar 

  56. Kravtsova, V. V., Petrov, A. M., Matchkov, V. V., Timonina, N. A., Zakyrjanova, G. F., et al. (2016) Distinct α2 Na,K-ATPase membrane pool are differently involved in early skeletal muscle remodeling during disuse, J. Gen. Physiol., 147, 175-188, https://doi.org/10.1085/jgp.201511494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Matchkov, V. V., and Krivoi, I. I. (2016) Specialized functional diversity and interactions of Na,K-ATPase, Front. Physiol., 7, 179, https://doi.org/10.3389/fphys.2016.00179.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Professor Alexander Chibalin (Karolinska Institute, Stockholm, Sweden) for invaluable ideas suggested during discussion of the results.

Funding

This work was supported by the Russian Science Foundation (project 16-15-10026-П).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid V. Kapilevich.

Ethics declarations

The authors declare no conflict of interest in financial or any other sphere. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kironenko, T.A., Milovanova, K.G., Zakharova, A.N. et al. Effect of Dynamic and Static Load on the Concentration of Myokines in the Blood Plasma and Content of Sodium and Potassium in Mouse Skeletal Muscles. Biochemistry Moscow 86, 370–381 (2021). https://doi.org/10.1134/S0006297921030123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297921030123

Keywords

Navigation