Pflügers Archiv

, Volume 356, Issue 3, pp 237–244 | Cite as

Effect of azide on the ERG of the isolated mammalian retina

  • L. Wündsch
  • A. v. Lützow
  • J. H. Reuter
Article

Summary

Azide, which is known to affect the pigment epithelium strongly may be assumed to cause damage to the receptors, which are functionally connected to the pigment epithelium. To check this hypothesis the effect of azide on the ERG was investigated. An isolated retina preparation was used as in this preparation the P III component, which contains considerable receptor contribution, can be isolated.

In 2 series of experiments the effects of azide on the P III and the complete ERG were investigated. Depending on the concentration azide was shown to abolish the b-wave, to cause delay and amplitude diminution of the P III and enhance a positive component in the off-effect.

A number of plausible sites of origin of these azide effects on the ERG changes are discussed.

Key words

Azide Effect Electroretinogram Retina Isolated Rabbit 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown, K. T.: The electroretinogram: its components and their origins. Vision Res.8, 633–677 (1968)Google Scholar
  2. Cervetto, L., McNichol, E. F.: Inactivation of horizontal cells in turtle retina by glutamate and aspartate. Science178, 767–768 (1972)Google Scholar
  3. Hanitzsch, R.: Intraretinal isolation of P III subcomponents in the isolated rabbit retina after treatment with sodium aspartate. Vision Res.13, 2093–2102 (1973)Google Scholar
  4. Hanitzsch, R., Bornschein, H.: Spezielle Überlebensbedingungen für isolierte Netzhäute verschiedener Warmblüter. Experientia (Basel)21, 484–486 (1965)Google Scholar
  5. Lützow, A. v., Wündsch, L.: Grenzen zeitlicher Summation im Doppelreiz-ERG des Kaninchens. Vision Res.7, 565–571 (1967)Google Scholar
  6. Miller, R. F., Dowling, J. E.: A relationship between Müller cell slow potentials and the ERG b-wave. Proc. VIII. Symp. ISCERG, pp. 85–100, Pisa, Pacini (1972)Google Scholar
  7. Murakami, M., Kaneko, A.: Differentiation of P III subcomponents in cold-blooded vertebrate retinas. Vision Res.6, 627–636 (1966)Google Scholar
  8. Noell, W. K.: Studies on the electrophysiology and the metabolism of the retina. Project Rep. 21-1201-0004 No 1, USA Air Force School of Aviation Medicine, Randolph Field, Texas (1953)Google Scholar
  9. Pautler, E. L., Murakami, M., Nosaki, H.: Differentiation of P III subcomponents in isolated mammalian retinas. Vision Res.8, 489–491 (1968)Google Scholar
  10. Penn, R. D., Hagins, W. A.: Signal transmission along retinal rods and the origin of the electroretinographic a-wave. Nature (Lond.)223, 201–205 (1969)Google Scholar
  11. Tomita, T., Electrical activity in the vertebrate retina. J. Opt. Soc. Amer.53, 49–57 (1963)Google Scholar
  12. Wündsch, L., Lützow, A. v.: The effect of aspartate on the ERG of the isolated rabbit retina. The visual system: Neurophysiology, Biophysics and Their Clinical Applications, pp. 95–99, New York: Plenum Publi. Corp. 1972Google Scholar
  13. Wündsch, L., Lützow, A. v., Reuter, J. H.: Nachweis des Azid-Potentials an der isolierten Kaninchennetzhaut. Experientia (Basel)30, 627–628 (1974)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • L. Wündsch
    • 1
    • 2
  • A. v. Lützow
    • 1
    • 2
  • J. H. Reuter
    • 1
    • 2
  1. 1.Institut für allgemeine und vergleichende PhysiologieUniversität WienWienAustria
  2. 2.Physiologisch InstituutErasmus Universiteit RotterdamRotterdamThe Netherlands

Personalised recommendations