Skip to main content
Log in

Contractures in normal and denervated inferior oblique muscle of the rabbit

  • Excitable Tissues and Central Nervous Physiology
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

Isometric contracture responses of normal and denervated inferior oblique muscles (IO) of the rabbit have been investigated in vitro at 35°C. The threshold concentration for eliciting potassium contractures was about 20 mM K+. In normal IO low potassium concentrations up to about 50 mM K+ evoked only sustained contractures, higher concentrations were responded by contractures with an initial transient component. The transient tension development was maximal at about 100 mM K+ the sustained component at 80 mM K+. After denervation the characteristic time course of the contractures was not changed, but the tension output of the preparations was diminished and long-term denervated IO have a somewhat lowered threshold. In normal IO acetylcholine (ACh), succinylcholine (SCh) and choline (Ch) caused also sustained contractures, the threshold doses were about 5 μM for ACh and SCh and 500 μM for Ch. The ACh sensitivity of the preparations was increased by physostigmine and decreased or abolished byd-tubocurarine. Denervation increased the drug sensitivity but the shape of the contractures was hardly influenced. The properties of slow tonic muscle fibres in mammalian extraocular muscles (EOM) probably responsible for sustained contractures and their changes after denervation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alvarado J, van Horn C (1975) Muscle cell types of the cat inferior oblique. In: Lennerstrand G, Bach-y-Rita P (eds) Basic mechanisms of ocular motility and their clinical implications. Pergamon, Oxford, pp 15–43

    Google Scholar 

  2. Asmussen G, Kiessling A (1970) Die Muskelfasersorten des Frosches: Ihre Identifikation und die Gesetzmäßigkeiten ihrer Anordnung in der Skelettmuskulatur. Acta Biol Med Ger 24:871–889

    Google Scholar 

  3. Asmussen G, Kiessling A, Wohlrab F (1971) Histochemische Charakterisierung der verschiedenen Muskelfasertypen in den äußeren Augenmuskeln von Säugetieren. Acta Anat 79:526–545

    Google Scholar 

  4. Asmussen G (1974) Über das Vorkommen von zwei motorischen Systemen im okulorotatorischen Apparat der Säuger. Wiss Z Karl-Marx-Univ Leipzig, Math-Naturwiss R 23:125–140

    Google Scholar 

  5. Asmussen G, Wohlrab F (1974) Gemeinsamkeiten im Aufbau der äußeren Augenmuskulatur der Wirbeltiere. Wiss Z Karl-Marx-Univ Leipzig, Math-Naturwiss R 23:143–154

    Google Scholar 

  6. Asmussen G, Kiessling A (1976) Kaliberveränderungen der Muskelfasertypen des Musculus obliquus inferior oculi des Kaninchens nach Denervierung. Acta Anat 96:386–403

    Google Scholar 

  7. Asmussen G (1978) The properties of the extraocular muscles of the frog. II. Pharmacological properties of the isolated superior oblique and superior rectus muscles. Acta Biol Med Ger 37:313–321

    Google Scholar 

  8. Asmussen G, Gaunitz U (1978) Kontraktile Eigenschaften der quergestreiften Muskelfasern des Oesophagus im Vergleich mit ausgewählten Skelettmuskeln der Ratte. Acta Biol Med Ger 37:335–346

    Google Scholar 

  9. Asmussen G, Gaunitz U (1981) Mechanical properties of the isolated inferior oblique muscle of the rabbit. Pflügers Arch 392:183–190

    Google Scholar 

  10. Asmussen G, Gaunitz U (1981) Changes in mechanical properties of the inferior oblique muscle of the rabbit after denervation. Pflügers Arch 392:198–205

    Google Scholar 

  11. Axelson J, Thesleff S (1959) A study of supersensitivity in denervated mammalian skeletal muscle. J Physiol 147:178–193

    Google Scholar 

  12. Chiarandini DJ (1976) Activation of two types of fibres in rat extraocular muscles. J Physiol 259:199–212

    Google Scholar 

  13. Close RJ, Luff AR (1974) Dynamic properties of inferior rectus muscle of the rat. J Physiol 236:259–270

    Google Scholar 

  14. Diamond J, Miledi R (1962) A study of foetal and newborn rat muscle fibres. J Physiol 162:393–408

    Google Scholar 

  15. Dulhunty A (1977) K-contractures and membrane potential in mammalian skeletal muscle. Nature 266:75–77

    Google Scholar 

  16. Fedde MR (1969) Electrical properties and acetylcholine sensitivity of singly and multiply innervated avian muscle fibers. J Gen Physiol 53:624–637

    Google Scholar 

  17. Filogamo G, Gabella G (1966) Cholinesterase behaviour in the denervated and reinnervated muscles. Acta Anat 63:199–214

    Google Scholar 

  18. Fleming WW (1971) Supersensitivity of the denervated rat diaphragm to potassium: A comparison with supersensitivity in other tissues. J Pharmac Exp Ther 176:160–166

    Google Scholar 

  19. Ginsborg BL (1960) Some properties of avian skeletal muscle fibres with multiple neuromuscular junctions. J Physiol 154:581–598

    Google Scholar 

  20. Gutmann E, Hanzlikova V (1966) Contracture responses of fast and slow mammalian muscles. Physiol Bohemoslov 15:404–414

    Google Scholar 

  21. Harker DW (1972) The structure and innervation of sheep superior rectus and levator palpebrae extraocular muscles. I. Extrafusal muscle fibers. Invest Ophthalmol 11:956–969

    Google Scholar 

  22. Hodgkin AL, Horowicz P (1960) Potassium contractures in single muscle fibres. J Physiol 153:386–403

    Google Scholar 

  23. Kiessling A (1964) Die Acetylcholinempfindlichkeit der Muskelfasern im Tonusbündel des M. iliofibularis des Frosches. Pflügers Arch 280:189–192

    Google Scholar 

  24. Kuffler SW, Vaughan Williams EM (1953) Properties of the “slow” skeletal muscle fibres of the frog. J Physiol 121:318–340

    Google Scholar 

  25. Lännergren J (1975) Structure and function of twitch and slow fibres in amphibian skeletal muscle. In: Lennerstrand G, Bach-y-Rita P (eds) Basic mechanisms of ocular motility and their clinical implications. Pergamon, Oxford, pp 63–84

    Google Scholar 

  26. Lennerstrand G (1975) Motor units in eye muscles. In: Lennerstrand G, Bach-y-Rita P (eds) Basic mechanisms of ocular motility and their clinical implications. Pergamon, Oxford, pp 119–143

    Google Scholar 

  27. Lorkovic H (1971) Membrane potential and mechanical tension in white and red muscles of the rat. Am J Physiol 221:1044–1050

    Google Scholar 

  28. Lüllmann H, Reis E (1967) Über den Zusammenhang zwischen Membranpotential und Kalium- bzw. Acetylcholin-Kontraktur am chronisch denervierten Rattenzwerchfell. Pflügers Arch 294:113–118

    Google Scholar 

  29. Lüllmann H, Sunano S (1973) Acetylcholine contracture and excitation-contraction coupling in denervated rat diaphragm muscle. Pflügers Arch 342:271–282

    Google Scholar 

  30. Malvey JE, Schottelius DO, Schottelius BA (1973) Electrical, mechanical and physical properties of denervated latissimus dorsi muscles of the chicken. Exp Neurol 40:52–67

    Google Scholar 

  31. Masuda K, Takahashi S, Kuriyama H (1974) Studies on the fibre types of the guinea pig masticatory muscles. Comp Biochem Physiol 47A, 1171–1184

    Google Scholar 

  32. Mayr R (1971) Structure and distribution of fibre types in external eye muscles of the rat. Tissue Cell 3:433–462

    Google Scholar 

  33. Miledi R, Zelena J (1966) Sensitivity to acetylcholine in rat slow muscle. Nature 210:855–856

    Google Scholar 

  34. Turkanis SA (1969) Some properties of the denervated anterior gracilis muscle of the rat. Br J Pharmacol 37:414–424

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asmussen, G., Gaunitz, U. Contractures in normal and denervated inferior oblique muscle of the rabbit. Pflugers Arch. 392, 191–197 (1981). https://doi.org/10.1007/BF00581271

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00581271

Key words

Navigation