Skip to main content
Log in

Microstructure and fracture behaviour of short and long fibre-reinforced polypropylene composites

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Microstructure and fracture mechanical behaviour of injection-moulded, longer glass fibrereinforced polypropylene (Verton* aspect ratio ≈ 320) were studied as a function of fibre volume fraction and compared to that of shorter fibre-filled polypropylene (aspect ratio ≈ 70). Toughness was measured using instrumented notched lzod and falling weight impact tests, as well as compact tension specimens. It was found that the addition of longer fibres generally increased the toughness of the material, although more significant increases were seen in the impact tests than were seen in the compact tension test. For the latter results, a correlation between toughness improvement and microstructural details was performed on the basis of the microstructural efficiency concept, a semi-empirical approach of the formK c,C = (a* +nR)K c,M, where,K c,C andK c,M are the fracture toughnesses of the composite and the matrix, respectively,a* is a matrix stress correction factor,n is a scaling parameter andR is a fibre reinforcement effectiveness factor. The latter corrects for differences in the composite microstructures, and incorporates effective fibre orientation factors, layering of injection moulded parts, and fibre volumes in the different layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

crack length

a * :

matrix toughness correction factor

A :

cross-sectional area

B :

thickness of the sample plaques

C :

thickness of the composite core regions

E peak :

energy adsorbed up to the maximum force in the impact load-displacement curve

E t :

tensile modulus

F max :

maximum force in impact force-displacement curves

f p :

fibre orientation factor

f pe :

effective orientation factor

f pe,C :

effective orientation parameter, core region

f pe, s :

effective orientation parameter, surface region

F :

critical load in the tensile test load-displacement curves

K c :

critical stress intensity factor/fracture toughness

K L :

fracture toughness of the composite materials

K d :

dynamic fracture toughness

K L :

fracture toughness of the matrix

L :

test with crack parallel to the mould filling direction

M :

microstructural efficiency factor

n :

scaling parameter for reinforcement effectiveness factor (energy absorbtion ratio)

R :

reinforcement effectiveness factor

S :

thickness of the composite surface regions

T:

test with crack perpendicular to the mould filling direction

V f :

fibre volume fraction

V m :

matrix volume fraction (= 1 —V f)

W :

specimen width

W f :

fibre weight fraction

W m :

matrix weight fraction (= 1 —W f)

X n :

number average fibre length

X v :

volume average fibre length

Y(a/ W):

polynomial correction for compact tension specimens

α:

variable in effective orientation factor formula

β :

variable in effective orientation factor formula

ɛB :

strain to break

ϱc :

density of the composite

ϱf :

fibre density

ϱm :

matrix density

σF :

fracture strength

θ:

fibre angle with respect to a reference direction

References

  1. A. G. Gibson, A. N. McClelland, G. Cuff andC. R. GORE, “Processing of long fibre reinforced thermoplastics”, in “Developments in the Science and Technology of Composite Materials”, ECCM-I Conference, 24 to 27 September, 1985, Bordeaux, edited by A. R. Bunsell, P. Lamicq and A. Massiah, pp. 511–19.

  2. J. Karger-Kocsis andK. Friedrich,Compos. Sci. Technol. 32 (1988) 293.

    Google Scholar 

  3. Idem, Composites 19 (1988) 105.

    Google Scholar 

  4. K. Friedrich,Compos. Sci. Technol. 22 (1985) 43.

    Google Scholar 

  5. K. Friedrich, R. Walter, H. Voss andJ. Karger-Kocsis,Composites 17 (1986) 205.

    Google Scholar 

  6. J. C. Malzahn andJ. M. Schultz,Compos. Sci. Technol. 25 (1986) 187.

    Google Scholar 

  7. M. W. Darlington, P. L. McGinley andG. R. Smith,J. Mater. Sci. 11 (1976) 877.

    Google Scholar 

  8. P. F. Bright, R. J. Crowson andM. J. Folkes,ibid. 13 (1978) 2497.

    Google Scholar 

  9. P. F. Bright andM. W. Darlington,Plast. Rubb. Process. Appl. 1 (1981) 139.

    Google Scholar 

  10. J. R. Vinson andR. L. Sierakowski, “The Behavior of Structures Composed of Composite Materials” (Martinus Nijhoff, Boston, 1986) p. 297.

    Google Scholar 

  11. D. Broek, “Elementary Engineering Fracture Mechanics”, 3rd Edn (Martinus Nijhoff, The Hague, 1984) p. 76.

    Google Scholar 

  12. H. Voss andK. Friedrich,J. Mater. Sci. 21 (1986) 2889.

    Google Scholar 

  13. H. Voss, “Aufbau, Bruchverhalten und Verschleißeigenschaften Kurzfaserverstärkter Hochleistungsthermoplaste”, VDI Fortschr. Ber., Reihe 5, No. 116 (VDI Verlag, Düsseldorf, 1987).

    Google Scholar 

  14. M. J. Folkes, “Short Fibre-Reinforced Thermoplastics” (Research Studies Press, Chichester, 1982).

    Google Scholar 

  15. K. Friedrich,Plast. Rubb. Process. Appl. 3 (1983) 255.

    Google Scholar 

  16. F. Ramsteiner andR. Theysohn,Composites 10 (1979) 111.

    Google Scholar 

  17. K. Friedrich, R. Walter andJ. Voigt,J. Thermoplastics Compos. Mater,1 (1988) 68.

    Google Scholar 

  18. E. M. Silverman,Polym. Compos. 8 (1987) 8.

    Google Scholar 

  19. R. S. Bailey, M. Davies andD. R. Moore, unpublished (1989).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spahr, D.E., Friedrich, K., Schultz, J.M. et al. Microstructure and fracture behaviour of short and long fibre-reinforced polypropylene composites. J Mater Sci 25, 4427–4439 (1990). https://doi.org/10.1007/BF00581104

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00581104

Keywords

Navigation