Skip to main content
Log in

Acute metabolic actions of des-(B27–B30)-insulin and related analogues in adult rats

  • Originals
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Metabolic potencies of the destetrapeptide insulin analogues des-(B27–B30)-insulin, des-(B27–B30)-insulin-B26-amide, [ThrB26] des-(B27–B30)-insulin-B26-amide and [GluB26] des-(B27-B30)-insulin-B26-amide were studied in anaesthetized adult rats and in primary cultures of rat hepatocytes and compared with that of the native hormone. Hypoglycaemic effects following intravenous bolus injection of insulin or analogues were similar, as were the stimulatory actions on total body glucose disposal during euglycaemic clamping. In these latter studies a maximal stimulation in the range 16–20 mg glucose/kg per hour was observed and identical half-maximally effective serum concentrations for all peptides of about 1 pmol/ml were obtained. Analogue actions on individual peripheral tissues estimated by the uptake of 2-deoxyglucose were not different from those of insulin. In hepatocyte cultures the stimulatory action of destetrapeptide analogues on glycogenesis and on aminoisobutyric acid transport was indistinguishable from that of native insulin, with identical half-maximally effective concentrations. These data demonstrate that des-(B27–B30)-insulin and related destetrapeptide analogues have high biological activity. Since the truncated non-amidated analogue appeared to be monomeric in solution, this peptide could be a candidate for an insulin preparation potentially showing rapid absorption from subcutaneous tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brandenburg D, Saunders DJ, Schüttler A, Pancreatic hormones. In: Jones JH (ed) Amino acids, peptides and proteins. Specialist periodical reports of the Chemical Society, vol 11. Chemical Society, London, pp 461–476, 1983

    Google Scholar 

  2. Gammeltoft S, Insulin receptors: binding kinetics and structure-function relationship of insulin. Physiol Rev 64:1321–1378, 1984

    PubMed  CAS  Google Scholar 

  3. Mirmira RG, Nakagawa SH, Tager HS, Importance of the character and configuration of residues B24, B25 and B26 in insulin-receptor interactions. J Biol Chem 266:1428–1436, 1991

    PubMed  CAS  Google Scholar 

  4. Weitzel G, Bauer F-U, Eisele K, Structure and activity of insulin, XIV1–4. Further studies on the three-step increase in activity due to the aromatic amino acids B24–26 (-Phe-Phe-Tyr-). Hoppe-Seyler's Z Physiol Chem 357:187–200, 1976

    Article  PubMed  CAS  Google Scholar 

  5. Riemen MW, Pon LA, Carpenter FH, Preparation of semisynthetic insulin analogues from bis (tert-butyloxycarbonyl) desoctapeptide-insulin phenylhydrazine: importance of the aromatic region B24–B26. Biochemistry 22:1507–1515, 1983

    Article  PubMed  CAS  Google Scholar 

  6. Gattner H-G, Darstellung und Eigenschaften von Des-Pentapeptid-(B26–30)-Rinderinsulin. Hoppe-Seyler's Z Physiol Chem 356:1397–1404, 1975

    Article  PubMed  CAS  Google Scholar 

  7. Cockram CS, Jones RH, Sonksen PH, Tatnell MA, Zhu SQ, Dodson GG, An examination of the role of insulin dimerisation and negative cooperativity using biological properties of the despentapeptide and deshexapeptide insulins. Diabetologia 30:733–738, 1987

    Article  PubMed  CAS  Google Scholar 

  8. Fischer WH, Saunders D, Brandenburg D, Wollmer A, Zahn H, A shortened insulin with full in vitro potency. Biol Chem Hoppe-Seyler 366:521–525, 1985

    Article  PubMed  CAS  Google Scholar 

  9. Hartmann H, Oberhaus K, Spahr R, Brandenburg D, Creutzfeldt W, Probst I, Biological activity of des-(B27–B30)-insulinamide and related analogues in rat hepatocyte cultures. Diabetologia 32:416–420, 1989

    Article  PubMed  CAS  Google Scholar 

  10. Stümpel F, Hartmann H, Brandenburg D, Creutzfeldt W, In vivo metabolic activity of des-(B26–B30)-insulin-B25-amide and related analogues in the rat. Diabetes Res Clin Pract 9:257–264, 1990

    Article  PubMed  Google Scholar 

  11. Hartmann H, Moesus E, Creutzfeldt W, Comparison of subcutaneously administered soluble insulin and des-(B26–B30)-insulin-B25-amide in rabbit, pig and healthy man. Diabetes Res Clin Pract 16:175–181, 1992

    Article  PubMed  CAS  Google Scholar 

  12. Brange J, Owens DR, Kang S, Volund A, Monomeric insulins and their experimental and clinical implications. Diabetes Care 13:923–954, 1990

    Article  PubMed  CAS  Google Scholar 

  13. Brange J, Ribel U, Hansen JF, Dodson G, Hansen MT, Havelund S, Melberg SG, Norris F, Norris K, Snel L, Sorensen AR, Voigt HO, Monomeric insulins obtained by protein engineering and their medical implications. Nature 333:679–682, 1988

    Article  PubMed  CAS  Google Scholar 

  14. Vora JP, Owens DR, Dolben J, Atiea JA, Dean JD, Kang S, Burch A, Brange J, Recombinant DNA derived monomeric insulin analogue: comparison with soluble insulin in normal subjects. BMJ 297:1236–1239, 1988

    Article  PubMed  CAS  Google Scholar 

  15. Kang S, Owens DR, Vora JP, Brange J, Volund A, Owens DR, Comparison of subcutaneous soluble human insulin and insulin analogues (AspB9, GluB27; AspB10; AspB28) on meal-related plasma glucose excursions in type I diabetic subjects. Diabetes Care 14:571–577, 1991

    Article  PubMed  CAS  Google Scholar 

  16. Katsoyannis PG, Ginos J, Cosmatos A, Schwartz G, Synthesis of destetrapeptide B27–30 human (porcine) insulin: a biologically active analog. J Am Chem Soc 95:6427–6434, 1973

    Article  PubMed  CAS  Google Scholar 

  17. Lenz V, Gattner H-G, Sievert D, Wollmer A, Engels M, Höcker H, Semisynthetic des-(B27–B30)-insulins with modified B26-tyrosine. Biol Chem Hoppe-Seyler 372:495–504, 1991

    Article  PubMed  CAS  Google Scholar 

  18. Cosmatos A, Ferderigos N, Katsoyannis PG, Chemical synthesis of [Des tetrapeptide B27–30), Tyr(NH2)26-B] and [Des-(pentapeptide B26–30), Phe(NH 252 -B] bovine insulins. Int J Peptide Res 14:457–471, 1979

    Article  CAS  Google Scholar 

  19. Sievert D, Semisynthese and Struktur-Funktionsuntersuchung von Des-Tetrapeptid (B27–B30)-Insulinen mit Austausch von B26-Tyrosin. Mathematisch-Naturwissenschaftliche Fakultät der Rheinisch-Westfälischen Technischen Hochschule Aachen, Aachen, 1991

    Google Scholar 

  20. Vormbrock R, UV-method with glucose dehydrogenase. In: Bergmeyer HU (ed) Methods of enzymatic analysis, vol 6. Verlag Chemie, Weinheim, pp 172–178, 1974

    Google Scholar 

  21. Yeh KC, Kwan KC, A comparison of numerical integrating algorithms by trapezoidal, Lagrange, and spline approximation. J Pharmacokinet Biopharm 6:79–93, 1978

    Article  PubMed  CAS  Google Scholar 

  22. DeFronzo RA, Tobin JD, Andres R, Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol 237:E214-E223, 1979

    PubMed  CAS  Google Scholar 

  23. Kraegen EW, James DE, Jenkins AB, Chisholm DJ, Dose-response curves for in vivo insulin sensitivity in individual tissues in rats. Am J Physiol 248:E353-E362, 1985

    PubMed  CAS  Google Scholar 

  24. Kraegen EW, James DE, Storlien LH, Burleigh KM, Chisholm DJ, In vivo insulin resistance in individual peripheral tissues of the high fat fed rat: assessment by euglycaemic clamp plus deoxyglucose administration. Diabetologia 29:192–198, 1986

    Article  PubMed  CAS  Google Scholar 

  25. Katz NR, Nauck MA, Wilson PT, Induction of glucokinase by insulin under the permissive action of dexamethasone in primary rat hepatocyte cultures. Biochem Biophys Res Commun 83:23–29, 1979

    Article  Google Scholar 

  26. Fleig WE, Nöther-Fleig G, Steudter S, Enderle D, Ditschuneit H, Regulation of insulin binding and glycogenesis by insulin and dexamethasone in cultured rat hepatocytes. Biochim Biophys Acta 847:352–361, 1985

    Article  PubMed  CAS  Google Scholar 

  27. Chaiken RL, Moses AC, Usher P, Flier JS, Insulin stimulation of aminoisobutyric acid transport in human skin fibroblasts is mediated through both insulin and type I insulin-like growth factor receptors. J Clin Endocrinol Metab 63:1181–1185, 1986

    Article  PubMed  CAS  Google Scholar 

  28. Zinman B, The physiological replacement of insulin: an elusive goal. N Engl J Med 321:363–370, 1989

    Article  PubMed  CAS  Google Scholar 

  29. Pirart J, Diabetes mellitus and its degenerative complications: a prospective study of 4400 patients observed between 1947 and 1973. Diabetes Care 1:168–188, 252–263, 1978

    Google Scholar 

  30. Tchobroutsky G, Relation of diabetic control to development of microvascular complications. Diabetologia 15:143–152, 1978

    Article  PubMed  CAS  Google Scholar 

  31. Ribel U, Hougaard P, Drejer K, Sorensen AR, Equivalent in vivo biological activity of insulin analogues and human insulin despite different in vitro potencies. Diabetes 39:1033–1039, 1990

    Article  PubMed  CAS  Google Scholar 

  32. Malherbe C, DeGasparo M, DeHertogh R, Hoet JJ, Circadian variations of blood sugar and plasma insulin levels in man. Diabetologia 5:397–404, 1969

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartmann, H., Korf, J., Ottmers, U. et al. Acute metabolic actions of des-(B27–B30)-insulin and related analogues in adult rats. Acta Diabetol 30, 108–114 (1993). https://doi.org/10.1007/BF00578224

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00578224

Key words

Navigation