Skip to main content

Insulin Analogs: Assessment of Insulin Mitogenicity and IGF-I Activity

  • Living reference work entry
  • First Online:
Drug Discovery and Evaluation: Pharmacological Assays
  • 610 Accesses

Abstract

The metabolic activity of insulin has been studied extensively in vitro and in vivo, based on the initial assessment of insulin receptor affinity, followed by methods to estimate the metabolic activity in vitro. These estimates provide some guidance about the biological activity which will be found in vivo; they need to be confirmed and supplemented by testing the glucose-lowering activity in animals (mice, rats, dogs, pigs). The biological effects (hypoglycemic activity) are related to the direct activation of the insulin receptor and subsequent signaling through intracellular mechanisms. The second group of biological effects is related to cell proliferation (mitogenic activity), which may be mediated by the insulin receptor, by the IGF-I receptor, and by hybrids of the two receptors. The evaluation of the relevance of mitogenicity estimates may be performed in in vitro and in vivo. One approach is cell proliferation in benign and malignant cell lines, for example, on mammary epithelial cell lines MCF-10 and MCF-7 (Milazzo et al. 1997).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References and Further Reading

Introduction and Application to Insulin Analogs

  • Baehr M, Kolter T, Seipke G, Eckel J (1997) Growth promoting and metabolic activity of the human insulin analog [GlyA21, ArgB31, ArgB32] insulin (HOE 901) in muscle cells. Eur J Pharmacol 320:259–265

    CAS  Google Scholar 

  • Berti L, Kellerer M, Bossenmaier B, Seffer E, Seipke G, Haring H (1998) The long-acting human insulin analog HOE901: characteristics of insulin signalling in comparison to Asp(B10) and regular insulin. Horm Metab Res 30:123–129

    CAS  PubMed  Google Scholar 

  • Bowsher RR, Lynch RA, Brown-Augsburger P, Santa PF, Legan WE, Woodworth JR, Chance RE (1999) Sensitive RIA for the specific determination of insulin lispro. Clin Chem. 45(1):104–110

    Google Scholar 

  • EMEA (European Agency for the Evaluation of Medical Products) (2001) Points to consider document on the non-clinical assessment of the carcinogenic potential of insulin analogs. European Agency for the Evaluation of Medicinal Products, London

    Google Scholar 

  • Hamel FG, Siford GL, Fawcett J, Chance RE, Frank BH, Duckworth WC (1999) Differences in the cellular processing of AspB10 human insulin compared with human insulin and LysB28ProB29 human insulin. Metabolism 48(5):611–617

    CAS  PubMed  Google Scholar 

  • Hennige AM, Strack V, Metzinger E, Seipke G, Haring HU, Kellerer M (2005) Effects of new insulin analogs HMR1964 (insulin glulisine) and HMR1423 on insulin receptors. Diabetologia 48(9):1891–1897. Epub 2005 July 29

    Google Scholar 

  • Jorgensen L, Dideriksen L, Drejer K (1992) Carcinogenic effect of the human insulin analog B10Asp in female rats. Diabetologia 35(Suppl 1):A3

    Google Scholar 

  • Kang S, Brange J, Burch A, Volund A, Owens DR (1991a) Subcutaneous insulin absorption explained by insulin’s physicochemical properties. Evidence from absorption studies of soluble human insulin and insulin analogs in humans. Diabetes Care 14(11):942–948

    CAS  PubMed  Google Scholar 

  • Kang S, Brange J, Burch A, Volund A, Owens DR (1991b) Absorption kinetics and action profiles of subcutaneously administered insulin analogs (AspB9GluB27, AspB10, AspB28) in healthy subjects. Diabetes Care 14(11):1057–1065

    CAS  PubMed  Google Scholar 

  • Kellerer M, Haering HU (2001) Insulin analogs: impact of cell model characteristics on results and conclusions regarding mitogenic properties. Exp Clin Endocrinol Diabetes 109:63–64

    Google Scholar 

  • Kurtzhals P, Schaffer L, Sorenson A, Kristensen C, Jonassen I, Schmid C, Trub T (2000) Correlations of recepwtor binding and metabolic and mitogenic potencies of insulin analogs designed for clinical use. Diabetes 49:999–1005

    Google Scholar 

  • Lin S, Wang SY, Chen EC, Chien YW (1999) Insulin lispro: invivo potency determination by intravenous administration in conscious rabbits. J Pharm Pharmacol 51(3):301–306

    Google Scholar 

  • Milazzo G, Sciacca L, Papa V, Goldfine ID, Vigneri R (1997) ASPB10 insulin induction of increased mitogenic responses and phenotypic changes in human breast epithelial cells: evidence for enhanced interactions with the insulin-like growth factor-I receptor. Mol Carcinog 18(1): 19–25

    Google Scholar 

  • Nielsen FS, Jorgensen LN, Ipsen M, Voldsgaard AI, Parving HH (1995) Long-term comparison of human insulin analog B10Asp and soluble human insulin in IDDM patients on a basal/bolus insulin regimen. Diabetologia 38:592–598

    CAS  PubMed  Google Scholar 

  • Rakatzi I, Stosik M, Gromke T, Siddle K, Eckel J (2006) Differential phosphorylation of IRS-1 and IRS-2 by insulin and IGF-I receptors. Arch Physiol Biochem 112(1):37–47

    CAS  PubMed  Google Scholar 

  • Slieker LJ, Brooke GS, DiMarchi RD, Flora DB, Green LK, Hoffmann JA, Long HB, Fan L, Shields JE, Sundell KL, Surface PL, Chance RE (1997) Modifications in the B10 and B26–30 regions of the B chain of human insulin alter affinity for the human IGF-I receptor more than for the insulin receptor. Diabetologia 40(Suppl 2):S54–S61

    Google Scholar 

  • von Mach MA, Brinkmann C, Hansen T, Weilemann LS, Beyer J (2002) Differences in pharmacokinetics and pharmacodynamics of insulin lispro and aspart in healthy volunteers. Exp Clin Endocrinol Diabetes 110(8):416–419

    Google Scholar 

  • Zib I, Raskin P (2006a) Novel insulin analogs and its mitogenic potential. Diabetes Obes Metab 8(6):611–620

    CAS  PubMed  Google Scholar 

Insulin Receptor Affinity

  • De Meyts P, Christoffersen CT, Ursø B et al (1993) Insulin potency as a mitogen is determined by the half-life of the insulin-receptor complex. Exp Clin Endocrinol Leipzig 101:22–23

    Google Scholar 

  • Drejer K, Kruse V, Larsen UD, Hougaard P, Bjørn S, Gammeltoft S (1991) Receptor binding and tyrosine kinase activation by insulin analogs with extreme affinities studied in human hepatoma HepG2 cells. Diabetes 40:1488–1495

    CAS  PubMed  Google Scholar 

  • Gammeltoft S (1984) Insulin receptors: binding kinetics and structure-function relationship of insulin. Physiol Rev 64:1321–1378

    CAS  PubMed  Google Scholar 

  • Hansen BF, Danielsen GM, Drejer K et al (1996) Sustained signalling from the insulin receptor after stimulation with insulin analogs exhibiting increased mitogenic potency. Biochem J 315:271–279

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kohanski RA, Lane MD (1983) Binding of insulin to solubilized insulin receptor from human placenta. Evidence for a single class of noninteracting binding sites. J Biol Chem 258:7460–7468

    CAS  PubMed  Google Scholar 

  • Kohanski RA, Lane MD (1985) Homogeneous functional insulin receptor from 3T3-L1 adipocytes. Purification using N alpha B1-(biotinyl-epsilon-aminocaproyl)insulin and avidin-sepharose. J Biol Chem 260:5014–5025

    CAS  PubMed  Google Scholar 

  • Kurtzhals P, Schaffer L, Sorenson A, Kristensen C, Jonassen I, Schmid C, Trub T (2000) Correlations of recepwtor binding and metabolic and mitogenic potencies of insulin analogs designed for clinical use. Diabetes 49:999–1005

    Google Scholar 

  • Lee J, Pilch PF (1994) The insulin receptor: structure, function, and signaling. Am J Physiol 266:C319–C334

    CAS  PubMed  Google Scholar 

  • Munson PJ, Rodbard D (1980) LIGAND: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem 107:220–239

    CAS  PubMed  Google Scholar 

  • Slieker LJ, Brooke GS, DiMarchi RD, Flora DB, Green LK, Hoffman JA, Long HB, Fan L, Shields JE, Sundell KL, Surface PL, Chance RE (1997) Modifications in the B10 and B26–30 regions of the B chain of human insulin alter affinity for the human IGF-I receptor more than for the insulin receptor. Diabetologia 40(Suppl 2):S54–S61

    Google Scholar 

  • Woldin CN, Hing FS, Lee J, Pilch PF, Shipley GG (1999) Structural studies of the detergent-solubilized and vesicle-reconstituted insulin receptor. J Biol Chem 274:34981–34992

    CAS  PubMed  Google Scholar 

Signaling Via Insulin Receptor

  • Chang L, Chiang SH, Saltiel AR (2004) Insulin signaling and the regulation of glucose transport. Mol Med 10(7–12):65–71

    CAS  PubMed Central  PubMed  Google Scholar 

  • De Meyts P, Ursø B, Christoffersen CT, Shymko RM (1995) Mechanism of insulin and IGF-I receptor activation and signal transduction specificity. Receptor dimer crosslinking, bell-shaped curves, and sustained versus transient signalling. Ann New York Acad Sci 766:388–340

    Google Scholar 

  • Gronborg M, Wulff BS, Rasmussen JS, Kjeldsen T, Gammeltoft S (1993) Structure-function relationship of the insulinlike growth factor-I receptor tyrosine kinase. J Biol Chem 268(31):23435–23440

    CAS  PubMed  Google Scholar 

  • Hennige AM, Lehmann R, Weigert C, Moeschel K, Schauble M, Metzinger E, Lammers R, Haring HU (2005) Insulin glulisine: insulin receptor signaling characteristics in vivo. Diabetes 54:361–366

    Google Scholar 

  • Ish-Shalom D, Tzivion G, Christoffersen CT, Ursø B, De Meyts P Naor D (1995) Mitogenic potential of insulin on lymphoma cells lacking IGF-I receptors. Ann N Y Acad Sci 766:409–415

    Google Scholar 

  • Lamphere L, Lienhard GE (1992) Components of signaling pathways for insulin and insulin-like growth factor-I in muscle myoblasts and myotubes. Endocrinology 131(5):2196–2202

    Google Scholar 

  • Shymko RM, De Meyts P, Thomas R (1997) Logical analysis of timing-dependent receptor signalling specificity: application to the insulin receptor metabolic and mitogenic signalling pathways. Biochem J 326(Pt 2):463–469

    CAS  PubMed Central  PubMed  Google Scholar 

  • Valentinis B, Baserga R (2001) IGF-I receptor signalling in transformation and differentiation. Mol Pathol 54(3):133–137

    CAS  PubMed Central  PubMed  Google Scholar 

IGF-I Receptor Affinity

  • Blakesley VA, Scrimgeour A, Esposito D, Le Roith D (1996) Signaling via the insulin-like growth factor-I receptor: does it differ from insulin receptor signaling? Cytokine Growth Factor Rev 7(2):153–159

    CAS  PubMed  Google Scholar 

  • Ciaraldi TP, Carter L, Seipke G, Mudaliar S, Henry RR (2001) Effects of the long-acting insulin analog insulin glargine on cultured human skeletal muscle cells: comparisons to insulin and IGF-I. J Clin Endocrinol Metab 86:5838–5847

    CAS  PubMed  Google Scholar 

  • Ciaraldi TP, Phillips SA, Carter L, Aroda V, Mudaliar S, Henry RR (2005) Effects of the rapid-acting insulin analog glulisine on cultured human skeletal muscle cells: comparisons with insulin and insulin-like growth factor I. J Clin Endocrinol Metab 90(10):5551–5558

    CAS  PubMed  Google Scholar 

  • De Meyts P (1994) The structural basis of insulin and insulinlike growth factor-I receptor binding and negative cooperativity, and its relevance to mitogenic versus metabolic signalling. Diabetologia 37(Suppl 2):S135–S148

    PubMed  Google Scholar 

  • De Meyts P, Wallach B, Christoffersen CT et al (1994) The insulin-like growth factor-I receptor. Structure, ligand binding mechanism and signal transduction. Horm Res 42:152–169

    PubMed  Google Scholar 

  • De Meyts P, Christoffersen CT, Urso B, Wallach B, Gronskov K, Yakushiji F, Shymko RM (1995a) Role of the time factor in signaling specificity: application to mitogenic and metabolic signaling by the insulin and insulin-like growth factor-I receptor tyrosine kinases. Metabolism 44(10 Suppl 4):2–11

    Google Scholar 

  • De Meyts P, Urso B, Christoffersen CT, Shymko RM (1995b) Mechanism of insulin and IGF-I receptor activation and signal transduction specificity. Receptor dimer crosslinking, bell-shaped curves, and sustained versus transient signaling. Ann N Y Acad Sci 766:388–401

    Google Scholar 

  • Henry RR, Abrams L, Nikoulina S, Ciaraldi TP (1995) Insulin action and glucose metabolism in non-diabetic control and NIDDM subjects: comparison using human skeletal muscle cell cultures. Diabetes 44:935–945

    Google Scholar 

  • LeRoith D, Sampson PC, Roberts CT Jr (1994) How does the mitogenic insulin-like growth factor I receptor differ from the metabolic insulin receptor? Horm Res 41(Suppl 2):74–78, discussion 79

    CAS  PubMed  Google Scholar 

  • Li G, Barrett EJ, Hong Wang H, Weidong C, Zhenqi L (2005) Insulin at physiological concentrations selectively activates insulin but not insulin-like growth factor I (IGF-I) or Insulin/IGF-I hybrid receptors in endothelial cells. Endocrinology 146:4690–4696

    Google Scholar 

  • Prager D, Melmed S (1993) Insulin and insulin-like growth factor I receptors: are there functional distinctions? Endocrinology 132(4):1419–1420

    CAS  PubMed  Google Scholar 

  • Rosenzweig SA, Oemar BS, Law NM, Shankavaram UT, Miller BS (1993) Insulin like growth factor 1 receptor signal transduction to the nucleus. Adv Exp Med Biol 343:159–168

    CAS  PubMed  Google Scholar 

  • Rubin R, Baserga R (1995) Insulin-like growth factor-I receptor. Its role in cell proliferation, apoptosis, and tumorigenicity. Lab Invest 73(3):311–331

    CAS  PubMed  Google Scholar 

  • Sepp-Lorenzino L (1998) Structure and function of the insulinlike growth factor I receptor. Breast Cancer Res Treat 47(3):235–253

    CAS  PubMed  Google Scholar 

  • Slieker LJ, Brooke GS, DiMarchi RD, Flora DB, Green LK, Hoffman JA, Long HB, Fan L, Shields JE, Sundell KL, Surface PL, Chance RE (1997) Modifications in the B10 and B26–30 regions of the B chain of human insulin alter affinity for the human IGF-I receptor more than for the insulin receptor. Diabetologia 40(Suppl 2):S54–S61

    Google Scholar 

  • Soos MA, Nave BT, Siddle K (1993) Immunological studies of type I IGF receptors and insulin receptors: characterisation of hybrid and atypical receptor subtypes. Adv Exp Med Biol 343:145–157

    Google Scholar 

  • Staiger K, Hennige AM, Schweitzer MA, Staiger H, Haering HU, Monika Kellerer M (2005) Effect of insulin glargine versus regular human insulin on proliferation of human breast epithelial cells. ADA annual symposium San Diego, abstract 451-P

    Google Scholar 

  • Stammberger I, Bube A, Durchfeld-Meyer B, Donaubauer H, Troschau G (2002) Evaluation of the carcinogenic potential of insulin glargine in rats and mice. Int J Toxicol 21(3):171–179

    Google Scholar 

  • Stammberger I, Seipke G, Bartels T (2006) Insulin glulisine—a comprehensive preclinical evaluation. Int J Toxicol 25(1):25–33

    Google Scholar 

  • Strobl JS, Wonderlin WF, Flynn DC (1995) Mitogenic signal transduction in human breast cancer cells. Gen Pharmacol 26(8):1643–1649

    CAS  PubMed  Google Scholar 

  • Takata Y, Kobayashi M (1994) Insulin-like growth factor I signalling through heterodimers of insulin and insulin-like growth factor I receptors. Diabete Metab 20(1):31–36

    CAS  PubMed  Google Scholar 

Signaling via IGF-1 Receptor

  • Belfiore A, Pandini G, Vella V, Squatrito S, Vigneri R (1999) Insulin/IGF-I hybrid receptors play a major role in IGF-I signaling in thyroid cancer. Biochimie 81(4):403–407

    CAS  PubMed  Google Scholar 

  • Blanquart C, Boute N, Lacasa D, Issad T (2005) Monitoring the activation state of the insulin-like growth factor-1 receptor and its interaction with protein tyrosine phosphatase 1B using bioluminescence resonance energy transfer. Mol Pharmacol 68:885–894

    CAS  PubMed  Google Scholar 

  • Blanquart C, Gonzalez-Yanes C, Issad T (2006) Monitoring the activation state of insulin/IGF-1 hybrid receptors using bioluminescence resonance energy transfer. Mol Phrmacol 70:1802–1811

    Google Scholar 

  • Blanquart C, Achi J, Issad T (2008) Characterization of IRA/IRB hybrid insulin receptors using bioluminescence resonance energy transfer. Biochem Pharmacol 76:873–883

    CAS  PubMed  Google Scholar 

  • Dupont J, LeRoith D (2001) Insulin and insulin-like growth factor I receptors: similarities and differences in signal transduction. Horm Res 55:22–26

    CAS  PubMed  Google Scholar 

  • Entingh-Pearsall A, Kahn CR (2004) Differential roles of the insulin and insulin-like growth factor-I (IGF-I) receptors in response to insulin and IGF-I. J Biol Chem 279(36):38016–38024. Epub 2004 Jul 7

    CAS  PubMed  Google Scholar 

  • Federici M, Lauro D, D’Adamo M, Giovannone B, Porzio O, Mellozzi M, Tamburrano G, Sbraccia P, Sesti G (1998a) Expression of insulin/IGF-I hybrid receptors is increased in skeletal muscle of patients with chronic primary hyperinsulinemia. Diabetes 47(1):87–92

    CAS  PubMed  Google Scholar 

  • Federici M, Porzio O, Lauro D, Borboni P, Giovannone B, Zucaro L, Hribal ML, Sesti G (1998b) Increased abundance of insulin/insulin-like growth factor-I hybrid receptors in skeletal muscle of obese subjects is correlated with in vivo insulin sensitivity. J Clin Endocrinol Metab 83(8):2911–2915

    CAS  PubMed  Google Scholar 

  • Frasca F, Pandini G, Vigneri R, Goldfine ID (2003) Insulin and hybrid insulin/IGF receptors are major regulators of breast cancer cells. Breast Dis 17:73–89

    CAS  PubMed  Google Scholar 

  • Issad T, Blanquart C, Gonzalez-Yanes C (2007) The use of bioluminsecence resonance energy transfer for the study of therapeutic targets: application to tyrosine kinase receptors. Expert Opin Ther Targets 11:541–556

    CAS  PubMed  Google Scholar 

  • Kim J, Accili D (2002) Signalling through IGF-I and insulin receptors: where is the specificity? Growth Horm IGF Res 12:84

    CAS  PubMed  Google Scholar 

  • Lamphere L, Lienhard GE (1992) Components of signaling pathways for insulin and insulin-like growth factor-I in muscle myoblasts and myotubes. Endocrinology 131(5):2196–2202

    Google Scholar 

  • Li G, Barrett EJ, Wang H, Chai W, Liu Z (2005) Insulin at physiological concentrations selectively activates insulin but not insulin-like growth factor I (IGF-I) or insulin/IGF-I hybrid receptors in endothelial cells. Endocrinology 146(11):4690–4696. Epub 2005 Aug 11

    Google Scholar 

  • Mosthaf L, Vogt B, Haring HU, Ullrich A (1991) Altered expression of insulin receptor types A and B in the skeletal muscle of non-insulin-dependent diabetes mellitus patients. Proc Natl Acad Sci U S A 88:4728–4730

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nitert MD, Chisalita SI, Olsson K, Bornfeldt KE, Arnqvist HJ (2005) IGF-I/insulin hybrid receptors in human endothelial cells. Mol Cell Endocrinol 229(1–2):31–37

    PubMed  Google Scholar 

  • Pandini G, Frasca F, Mineo R, Sciacca L, Vigneri R, Belfiore (2002) A Insulin/insulin-like growth factor I hybrid receptors have different biological characteristics depending on the insulin receptor isoform involved. J Biol Chem 277:39684-39695

    Google Scholar 

  • Pandini G, Vigneri R, Costantino A, Frasca F, Ippolito A, Fujita-Yamaguchi Y, Siddle K, Goldfine ID, Belfiore A (1999) Insulin and insulin-like growth factor-I (IGF-I) receptor overexpression in breast cancers leads to insulin/IGF-I hybrid receptor overexpression: evidence for a second mechanism of IGF-I signaling. Clin Cancer Res 5(7):1935–1944

    CAS  PubMed  Google Scholar 

  • Sakai K, Lowman HB, Clemmons DR (2002) Increases in free, unbound insulin-like growth factor I enhance insulin responsiveness in human hepatoma G2 cells in culture. J Biol Chem 277(16):13620–13627. Epub 2002 Feb 7

    CAS  PubMed  Google Scholar 

  • Salzman A, Wan CF, Rubin CS (1984) Biogenesis, transit, and functional properties of the insulin proreceptor and modified insulin receptors in 3T3-L1 adipocytes. Use of monensin to probe proreceptor cleavage and generate altered receptor subunits. Biochemistry 23:6555–6565

    CAS  PubMed  Google Scholar 

  • Schumacher R, Mosthaf L, Schlessinger J, Brandenburg D, Ullrich A (1991) Insulin and insulin-like growth factor-1 binding specificity is determined by distinct regions of their cognate receptors. J Biol Chem 266(29):19288–19295

    CAS  PubMed  Google Scholar 

  • Siddle K, Soos MA, Field CE, Nave BT (1994) Hybrid and atypical insulin/insulin-like growth factor I receptors. Horm Res 41(Suppl 2):56–64

    CAS  PubMed  Google Scholar 

  • Soos MA, Field CE, Siddle K (1993) Purified hybrid insulin/insulin-like growth factor-I receptors bind insulinlike growth factor-I, but not insulin, with high affinity. Biochem J 290:419–426

    Google Scholar 

  • Whitehead JP, Clark SF, Urso B, James DE (2000) Signalling through the insulin receptor. Curr Opin Cell Biol 12:222–228

    CAS  PubMed  Google Scholar 

Mitogenic Activity

  • Baserga R, Peruzzi F, Reiss K (2002) The IGF-1 receptor in cancer biology. Int J Cancer 107:873

    Google Scholar 

  • Dalle S, Ricketts W, Imamura T, Vollenweider P, Olefsky JM (2001) Insulin and insulin-like growth factor I receptors utilize different G protein signaling components. J Biol Chem 276:15688–15695

    CAS  PubMed  Google Scholar 

  • De Meyts P, Christoffersen CT, Ursø B et al (1995a) Role of the time factor in signalling specificity. Application to mitogenic and metabolic signalling by the insulin and insulinlike growth factor-I receptor tyrosine kinases. Metabolism 44(Suppl 4):1–11

    Google Scholar 

  • De Meyts P, Ursø B, Christoffersen CT, Shymko RM (1995b) Mechanism of insulin and IGF-I receptor activation and signal transduction specificity. Receptor dimer crosslinking, bell-shaped curves, and sustained versus transient signalling. Ann New York Acad Sci 766:388–401

    Google Scholar 

  • DeMeyts P, Whittaker J (2002) Structural biology of insulin and IGF1 receptors: implications for drug design. Nat Rev Drug Discov 1:769–783

    CAS  Google Scholar 

  • Hankinson SE, Willett WC, Colditz GA et al (1998) Circulating concentrations of insulin-like growth factor-I and risk of breast cancer. Lancet 351:1393–1396

    CAS  PubMed  Google Scholar 

  • Ish-Shalom D, Tzivion G, Christoffersen CT, Ursø B, De Meyts P, Naor D (1995) Mitogenic potential of insulin on lymphoma cells lacking IGF-I receptors. Ann N Y Acad Sci 766:409–415

    Google Scholar 

  • Jones JI, Clemmons DR (1995) Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev 16:3–34

    CAS  PubMed  Google Scholar 

  • Kellerer M, Haering HU (2001) Insulin analogs: impact of cell model characteristics on results and conclusions regarding mitogenic properties. Exp Clin Endocrinol Diabetes 109:63–64

    Google Scholar 

  • Koontz JW, Iwahashi M (1981) Insulin as a potent, specific growth factor in a rat hepatoma cell line. Science 211:947–949

    CAS  PubMed  Google Scholar 

  • Kurtzhals P, Schaffer L, Sorenson A, Kristensen C, Jonassen I, Schmid C, Trub T (2000) Correlations of recepwtor binding and metabolic and mitogenic potencies of insulin analogs designed for clinical use. Diabetes 49:999–1005

    Google Scholar 

  • Li G, Barrett EJ, Hong Wang H, Weidong C, Zhenqi L (2005) Insulin at physiological concentrations selectively activates insulin but not insulin-like growth factor I (IGF-I) or Insulin/IGF-I hybrid receptors in endothelial cells. Endocrinology 146:4690–4696

    Google Scholar 

  • Mamounas M, Gervin D, Englesberg E (1989) The insulin receptor as a transmitter of a mitogenic signal in Chinesehamster ovary CHO-K1 cells. Proc Natl Acad Sci U S A 86:9294–9298

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pandini G, Frasca F, Mineo R, Sciacca L, Vigneri R, Belfiore A (2002) Insulin/insulin-like growth factor I hybrid receptors have different biological characteristics depending on the insulin receptor isoform involved. J Biol Chem 277:39684–39695

    CAS  PubMed  Google Scholar 

  • Prisco M, Romano G, Peruzzi F, Valentinis B, Baserga R (1999) Insulin and IGF-I receptors signaling in protection from apoptosis. Horm Metab Res 31:80–89

    CAS  PubMed  Google Scholar 

  • Renehan AG, Zwahlen M, Minder C, O’Dwyer ST, Shalet SM, Egger M (2004) Insulin-like growth factor (IGF)-I, IGF binding protein-3, and cancer risk: systematic review and meta-regression analysis. Lancet 363:1346–1353

    CAS  PubMed  Google Scholar 

  • Schmid C, Keller C, Gosteli-Peter M, Zapf J (1999) Mitogenic and antiapoptotic effects of insulin-like growth factor binding protein-6 in the human osteoblastic osteosarcoma cell line Saos-2/B-10. Biochem Biophys Res Commun 263(3):786–789

    CAS  PubMed  Google Scholar 

  • Slaaby R, Schaffer L, Lautrup-Larsen I, Andersen AS, Shaw AC, Mathiasen IS, Brandt J (2006) Hybrid receptors formed by insulin receptor (IR) and insulin-like growth factor I receptor (IGF-IR) have low insulin and high IGF-1 affinity irrespective of the IR splice variant. J Biol Chem 281(36):25869–25874

    CAS  PubMed  Google Scholar 

  • Slieker LJ, Brooke GS, DiMarchi RD, Flora DB, Green LK, Hoffman JA, Long HB, Fan L, Shields JE, Sundell KL, Surface PL, Chance RE (1997) Modifications in the B10 and B26–30 regions of the B chain of human insulin alter affinity for the human IGF-I receptor more than for the insulin receptor. Diabetologia 40(Suppl 2):S54–S61

    Google Scholar 

  • Ullrich A, Schlessinger J (1990) Signal transduction by receptors with tyrosine kinase activity. Cell 61:203–212

    CAS  PubMed  Google Scholar 

Insulin and IGF-1 Assays

  • Andersen L, Jorgensen PN, Jensen LB, Walsh D (2000) A new insulin immunoassay specific for the rapid-acting insulin analog, insulin aspart, suitable for bioavailability, bioequivalence, and pharmacokinetic studies. Clin Biochem 33(8):627–633

    CAS  PubMed  Google Scholar 

  • Ashby JP, Frier BM (1981) Circulating C peptide: measurement and clinical application. Ann Clin Biochem 18(Pt 3):125–130

    CAS  PubMed  Google Scholar 

  • Blum WF, Breier BH (1994) Radioimmunoassays for IGFs and IGFBPs. Growth Regul 4(Suppl 1):11–19

    CAS  PubMed  Google Scholar 

  • Bonser AM, Garcia-Webb P (1981) C-peptide measurement and its clinical usefulness: a review. Ann Clin Biochem 18(Pt 3):200–206

    CAS  PubMed  Google Scholar 

  • Bowsher RR, Lynch RA, Brown-Augsburger P, Santa PF, Legan WE, Woodworth JR, Chance RE (1999) Sensitive RIA for the specific determination of insulin lispro. Clin Chem 45(1):104–110

    Google Scholar 

  • Cao Y, Smith WC, Bowsher RR (2001) A sensitive chemiluminescent enzyme immunoassay for the bioanalysis of carboxyl-terminal B-chain analogs of human insulin. J Pharm Biomed Anal 26(1):53–61

    CAS  PubMed  Google Scholar 

  • Clark PM, Hales CN (1994) How to measure plasma insulin. Diabetes Metab Rev 10(2):79–90

    CAS  PubMed  Google Scholar 

  • Elmlinger MW, Kuhnel W, Weber MM, Ranke MB (2004) Reference ranges for two automated chemiluminescent assays for serum insulin-like growth factor I (IGF-I) and IGF-binding protein 3 (IGFBP-3). Clin Chem Lab Med 42(6):654–664

    CAS  PubMed  Google Scholar 

  • Elmlinger MW, Zwirner M, Kuhnel W (2005) Stability of insulin-like growth factor (IGF)-I and IGF binding protein (IGFBP)-3 measured by the IMMULITE automated chemiluminescence assay system in different blood specimens. Clin Lab 51(3–4):145–152

    CAS  PubMed  Google Scholar 

  • Froesch ER, Hussain MA, Schmid C, Zapf J (1996) Insulin-like growth factor I: physiology, metabolic effects and clinical uses. Diabetes Metab Rev 12(3):195–215

    CAS  PubMed  Google Scholar 

  • Frystyk J, Skjaerbaek C, Vestbo E, Fisker S, Orskov H (1999) Circulating levels of free insulin-like growth factors in obese subjects: the impact of type 2 diabetes. Diabetes Metab Res Rev 15(5):314–322

    CAS  PubMed  Google Scholar 

  • Hill DJ, Milner RD (1985) Insulin as a growth factor. Pediatr Res 19(9):879–886

    CAS  PubMed  Google Scholar 

  • Johansson GS, Arnqvist HJ (2006) Insulin and IGF-I action on insulin receptors, IGF-I receptors, and hybrid insulin/IGF-I receptors in vascular smooth muscle cells. Am J Physiol 291(5):E1124–E1130. Epub 2006 Jun 27

    CAS  Google Scholar 

  • Juul A (2003) Serum levels of insulin-like growth factor I and its binding proteins in health and disease. Growth Horm IGF Res 13:113

    CAS  PubMed  Google Scholar 

  • Khosravi J, Anastasia D, Umesh B, Najmuddin K, Radha GK (2005) Pitfalls of immunoassay and sample for IGF-I: comparison of different assay methodologies using various fresh and stored serum samples. Clin Biochem 38(7):659–666

    CAS  PubMed  Google Scholar 

  • Kuerzel GU, Shukla U, Scholtz HE, Pretorius SG, Wessels DH, Venter C, Potgieter MA, Lang AM, Koose T, Bernhardt E (2003) Biotransformation of insulin glargine after subcutaneous injection in healthy subjects. Curr Med Res Opin 19(1):34–40

    Google Scholar 

  • Lassarre C, Duron F, Binoux M (2001) Use of the ligand immunofunctional assay for human insulin-like growth factor (IGF) binding protein-3 (IGFBP-3) to analyze IGFBP-3 proteolysis and IGF-I bioavailability in healthy adults, GH-deficient and acromegalic patients, and diabetics. J Clin Endocrinol Metab 86(5):1942–1952

    CAS  PubMed  Google Scholar 

  • Moses AC, Young SC, Morrow LA et al (1996) Recombinant human insulin-like growth factor I increases insulin sensitivity and improves glycemic control in type II diabetes. Diabetes 45:91

    CAS  PubMed  Google Scholar 

  • Mudaliar S, Mohideen P, Deutsch R, Ciaraldi TP, Armstrong D, Kim B, Sha X, Henry RR (2002) Intravenous glargine and regular insulin have similar effects on endogenous glucose output and peripheral activation/deactivation kinetic profiles. Diabetes Care 25(9):1597–1602

    CAS  PubMed  Google Scholar 

  • Pedersen O (1983) Insulin receptor assays used in human studies: merits and limitations. Diabetes Care 6(3):301–319

    CAS  PubMed  Google Scholar 

  • Polonsky KS, Given BD, Hirsch LJ, Tillil H, Shapiro ET, Beebe C, Frank BH, Galloway JA, Van Cauter E (1988a) Abnormal patterns of insulin secretion in non-insulin-dependent diabetes mellitus. N Engl J Med 318(19):1231–1239

    CAS  PubMed  Google Scholar 

  • Polonsky KS, Given BD, Van Cauter E (1988b) Twenty-four hour profiles and pulsatile patterns of insulin secretion in normal and obese subjects. J Clin Invest 81(2):442–448

    CAS  PubMed Central  PubMed  Google Scholar 

  • Quarmby V, Quan C, Ling V, Compton P, Canova-Davis E (1998) How much insulin-like growth factor I (IGF-I) circulates? Impact of standardization on IGF-I assay accuracy. J Clin Endocrinol Metab 83:1211–1216

    CAS  PubMed  Google Scholar 

  • Rutanen EM, Pekonen F (1991) Assays for IGF binding proteins. Acta Endocrinol (Copenh) 124(Suppl 2):70–73

    Google Scholar 

  • Taylor R (1984) Insulin receptor assays – clinical application and limitations (2). Diabet Med 1(3):181–188

    CAS  PubMed  Google Scholar 

  • Tchao A, Wong A, Bondy G (1995) Technical and clinical validation of a serum IGF-1 assay. Clin Biochem 28:331–331

    Google Scholar 

  • Teale JD, Marks V (1986) The measurement of insulin-like growth factor I: clinical applications and significance. Ann Clin Biochem 23(Pt 4):413–424

    PubMed  Google Scholar 

  • Temple R, Clark PM, Hales CN (1992) Measurement of insulin secretion in type 2 diabetes: problems and pitfalls. Diabet Med 9(6):503–512

    CAS  PubMed  Google Scholar 

  • Tillil H, Shapiro ET, Given BD, Rue P, Rubenstein AH, Galloway JA, Polonsky KS (1988) Reevaluation of urine C-peptide as measure of insulin secretion. Diabetes 37(9):1195–1201

    CAS  PubMed  Google Scholar 

  • Yakar S, LeRoith D, Brodt P (2005) The role of the growth hormone/insulin-like growth factor axis in tumor growth and progression: lessons from animal models. Cytokine Growth Factor Rev 16:407–420

    CAS  PubMed  Google Scholar 

  • Zapf J (1998) Growth promotion by insulin-like growth factor I in hypophysectomized and diabetic rats. Mol Cell Endocrinol 140(1–2):143–149

    CAS  PubMed  Google Scholar 

Assessment of Metabolic-Mitogenic Ratio In vitro

  • Agin A, Jeandidier N, Gasser F, Grucker D, Sapin R (2007) Glargine blood biotransformation: in vitro appraisal with human insulin immunoassay. Diabetes Metab 33:205–212

    CAS  PubMed  Google Scholar 

  • Baus D, Heermeier K, De HM, Metz-Weidmann C, Gassenhuber J et al (2008) Identification of a novel AS160 splice variant that regulates GLUT4 translocation and glucose-uptake in rat muscle cells. Cell Signal 20:2237–2246

    CAS  PubMed  Google Scholar 

  • Berchtold H, Hilgenfeld R (1999) Binding of phenol to R6 insulin hexamers. Biopolymers 51:165–172

    CAS  PubMed  Google Scholar 

  • Brange J, Owens DR, Kang S, Volund A (1990) Monomeric insulins and their experimental and clinical implications. Diabetes Care 13:923–954

    CAS  PubMed  Google Scholar 

  • Chantelau E (2009) Insulin-responsiveness of tumor growth. Arch Physiol Biochem 115:47–48

    CAS  PubMed  Google Scholar 

  • Cook N, Harris A, Hopkins A, Hughes K (2002) Scintillation proximity assay (SPA) technology to study biomolecular interactions. Curr Protoc Protein Sci Chapter 19:Unit. 19.8.1

    Google Scholar 

  • De MP, Whittaker J (2002) Structural biology of insulin and IGF1 receptors: implications for drug design. Nat Rev Drug Discov 1:769–783

    Google Scholar 

  • Dideriksen LH, Jorgensen LN, Drejer K (1992) Carcinogenic effect of female rats after 12 months administration of the insulin analog B10Asp. Diabetes 41:143A

    Google Scholar 

  • Eckardt K, Eckel J (2008) Insulin analogues: action profiles beyond glycaemic control. Arch Physiol Biochem 114:45–53

    CAS  PubMed  Google Scholar 

  • EMEA (European Agency for the Evaluation of Medical Products) (2001) Points to consider document on the nonclinical assessment of the carcinogenic potential of insulin analogs. European Agency for the Evaluation of Medicinal Products, London

    Google Scholar 

  • Frasca F, Pandini G, Sciacca L, Pezzino V, Squatrito S et al (2008) The role of insulin receptors and IGF-I receptors in cancer and other diseases. Arch Physiol Biochem 114:23–37

    CAS  PubMed  Google Scholar 

  • Frick W, Bauer A, Bauer J, Wied S, Müller G (1998) Structure-activity relationship of synthetic phosphoinositolglycans mimicking metabolic insulin action. Biochemistry 37:13421–13436

    CAS  PubMed  Google Scholar 

  • Goykhman S, Drincic A, Desmangles JC, Rendell M (2009) Insulin glargine: a review 8 years after its introduction. Expert Opin Pharmacother 10:705–718

    CAS  PubMed  Google Scholar 

  • Hilgenfeld R, Dörschug M, Geisen K, Neubauer H, Obermeier R (1992) Controlling insulin bioavailability by crystal contact engineering. Diabetologia 35(Suppl 1):A193

    Google Scholar 

  • Home PD, Ashwell SG (2002) An overview of insulin glargine. Diabetes Metab Res Rev 18(Suppl 3):S57–S63

    CAS  PubMed  Google Scholar 

  • Kohn WD, Micanovic R, Myers SL, Vick AM, Kahl SD et al (2007) pI-shifted insulin analogs with extended in vivo time action and favorable receptor selectivity. Peptides 28:935–948

    CAS  PubMed  Google Scholar 

  • Kristensen C, Wiberg FC, Andersen AS (1999) Specificity of insulin and insulin-like growth factor I receptors investigated using chimeric mini-receptors. Role of C-terminal of receptor alpha subunit. J Biol Chem 274:37351–37356

    CAS  PubMed  Google Scholar 

  • Kuerzel GU, Sandow J, Seipke G, Lang A, Maas J et al (2001) Kinetic and metabolic profile of insulin glargine (LANTUS). Diabetologia 44:798

    Google Scholar 

  • Kuerzel GU, Shukla U, Scholtz HE, Pretorius SG, Wessels DH et al (2003) Biotransformation of insulin glargine after subcutaneous injection in healthy subjects. Curr Med Res Opin 19: 4–40

    Google Scholar 

  • Kurtzhals P, Schaffer L, Sorensen A, Kristensen C, Jonassen I et al (2000) Correlations of receptor binding and metabolic and mitogenic potencies of insulin analogs designed for clinical use. Diabetes 49:999–1005

    Google Scholar 

  • Le Roith D (2007) Insulin glargine and receptor-mediated signalling: clinical implications in treating type 2 diabetes. Diabetes Metab Res Rev 23:593–599

    PubMed  Google Scholar 

  • Lepore M, Pampanelli S, Fanelli C, Porcellati F, Bartocci L et al (2000) Pharmacokinetics and pharmacodynamics of subcutaneous injection of long-acting human insulin analog glargine, NPH insulin, and ultralente human insulin and continuous subcutaneous infusion of insulin lispro. Diabetes 49:2142–2148

    CAS  PubMed  Google Scholar 

  • Levien TL, Baker DE, White JR Jr, Campbell RK (2002) Insulin glargine: a new basal insulin. Ann Pharmacother 36:1019–1027

    CAS  PubMed  Google Scholar 

  • Müller G, Wied S (1993) The sulfonylurea drug, glimepiride, stimulates glucose transport, glucose transporter translocation, and dephosphorylation in insulin-resistant rat adipocytes in vitro. Diabetes 42:1852–1867

    PubMed  Google Scholar 

  • Rissler K, Engelmann P (1996) Labeling of insulin with non-radioactive 127I and application to incorporation of radioactive 125I for use in receptor-binding experiments by high-performance liquid chromatography. J Chromatogr B Biomed Appl 679:21–29

    CAS  PubMed  Google Scholar 

  • Rosskamp RH, Park G (1999) Long-acting insulin analogs. Diabetes Care 22(Suppl 2):B109–B113

    PubMed  Google Scholar 

  • Sandow J (2009) Growth effects of insulin and insulin analogues. Arch Physiol Biochem 115:72–85

    CAS  PubMed  Google Scholar 

  • Sciacca L, Costantino A, Pandini G, Mineo R, Frasca F et al (1999) Insulin receptor activation by IGF-II in breast cancers: evidence for a new autocrine/paracrine mechanism. Oncogene 18:2471–2479

    CAS  PubMed  Google Scholar 

  • Sciacca L, Mineo R, Pandini G, Murabito A, Vigneri R et al (2002) In IGF-I receptor-deficient leiomyosarcoma cells autocrine IGF-II induces cell invasion and protection from apoptosis via the insulin receptor isoform A. Oncogene 21:8240–8250

    CAS  PubMed  Google Scholar 

  • Serrano R, Villar M, Martinez C, Carrascosa JM, Gallardo N et al (2005) Differential gene expression of insulin receptor isoforms A and B and insulin receptor substrates 1, 2 and 3 in rat tissues: modulation by aging and differentiation in rat adipose tissue. J Mol Endocrinol 34:153–161

    CAS  PubMed  Google Scholar 

  • Shukla A, Grisouard J, Ehemann V, Hermani A, Enzmann H et al (2009) Analysis of signaling pathways related to cell proliferation stimulated by insulin analogs in human mammary epithelial cell lines. Endocr Relat Cancer 16:429–441

    CAS  PubMed  Google Scholar 

  • Smith U, Gale EA (2009) Does diabetes therapy influence the risk of cancer? Diabetologia 52:1699–1708

    CAS  PubMed  Google Scholar 

  • Staiger K, Hennige AM, Staiger H, Haring HU, Kellerer M (2007) Comparison of the mitogenic potency of regular human insulin and its analogue glargine in normal and transformed human breast epithelial cells. Horm Metab Res 39:65–67

    CAS  PubMed  Google Scholar 

  • Vella V, Pandini G, Sciacca L, Mineo R, Vigneri R et al (2002) A novel autocrine loop involving IGF-II and the insulin receptor isoform-A stimulates growth of thyroid cancer. J Clin Endocrinol Metab 87:245–254

    CAS  PubMed  Google Scholar 

Depot Activity of Insulin Analogs in Rabbits

  • Hollander M, Wolfe DA (1973) Nonparametric statistical methods, Wiley series in probability and mathematical statistics. Wiley, New York

    Google Scholar 

  • Streitberg B, Röhmel J (1987) Exakte Verteilung für Rangund Randomisierungstests im allgemeinen Stichprobenproblem. In: EDV (ed) Medizin und Biologie, vol 18. Verlag Eugen Ulmer GmbH/Gustav Fisher Verlag KG, Stuttgart, pp 12–19

    Google Scholar 

Depot Activity of Insulin Analogs in Fasted Dogs

  • Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70

    Google Scholar 

  • Lin FO, Hasemann JK (1975) A modified Jonckeere test against ordered alternatives when ties are present at a single extreme value. National Institute of Environmental Health Sciences, North Carolina Environmental Biometric Branch

    Google Scholar 

  • Lin S, Wang SY, Chen EC, Chien YW (1999) Insulin lispro: invivo potency determination by intravenous administration in conscious rabbits. J Pharm Pharmacol 51(3):301–306

    Google Scholar 

  • Seipke G, Sandow J, Geisen K, Stammberger I (2000) Preclinical profile of the new long-acting insulin glargine (HOE 901). Endocrine Society annual meeting 2000, Toronto

    Google Scholar 

Mitogenic Risk and Safety Evaluation In vivo

  • EPAR EMEA Humalog (2006) Document 060195en6 lispro, scientific discussion in the public assessment report for Humalog (insulin lispro INN) http://www.emea.europa.eu/humandocs/Humans/EPAR/humalog

  • EPAR EMEA Lantus (2006) Document 061500en6 glargine, scientific discussion in the public assessment report for Lantus (insulin glargine INN) http://www.emea.europa.eu/humandocs/Humans/EPAR/lantus

  • EPAR EMEA Levemir (2006) Document 093604en6 detemir, scientific discussion in the public assessment report for Levemir (insulin detemir INN) http://www.emea.europa.eu/humandocs/Humans/EPAR/levemir

  • EPAR EMEA Novorapid (2004) Document 272799en6 aspart, scientific discussion in the public assessment report for Novorapid (insulin aspart NN). http://www.emea.europa.eu/humandocs/Humans/EPAR/novorapid

  • Hennige AM, Kellerer M, Strack V, Metzinger E, Seipke G, Haring HU (1999) New human insulin analogs: characteristics of insulin signalling in comparison to ASP (B10) and regular insulin. Diabetologia 42:A178 (Abstract 665)

    Google Scholar 

  • Kellerer M, Haering HU (2001c) Insulin analogs: impact of cell model characteristics on results and conclusions regarding mitogenic properties. Exp Clin Endocrinol Diabetes 109:63–64

    CAS  PubMed  Google Scholar 

  • Leroith D, Baserga R, Helman L, Roberts CT (1995) Insulin-like growth-factors and cancer. Ann Intern Med 122:54–59

    CAS  PubMed  Google Scholar 

  • Milazzo G, Sciacca L, Papa V, Goldfine ID, Vigneri R (1997) ASPB10 insulin induction of increased mitogenic responses and phenotypic changes in human breast epithelial cells: evidence for enhanced interactions with the insulinlike growth factor-I receptor. Mol Carcinog 18(1):19–25

    Google Scholar 

  • Staiger K, Hennige AM, Schweitzer MA, Staiger H, Haering HU, Monika Kellerer M (2005) Effect of insulin glargine versus regular human insulin on proliferation of human breast epithelial cells. ADA annual symposium San Diego, abstract 451-P

    Google Scholar 

  • Stammberger I, Bube A, Durchfeld-Meyer B, Donaubauer H, Troschau G (2002) Evaluation of the carcinogenic potential of insulin glargine in rats and mice. Int J Toxicol 21(3):171–179

    Google Scholar 

  • Stammberger I, Seipke G, Bartels T (2006) Insulin glulisine—a comprehensive preclinical evaluation. Int J Toxicol 25(1):25–33

    Google Scholar 

  • Zib I, Raskin P (2006b) Novel insulin analogs and its mitogenic potential. Diabetes Obes Metab 8(6):611–620

    CAS  PubMed  Google Scholar 

Oral Drug Delivery

  • Aoki N, Jin-no S, Nakagawa Y, Asai N, Arakawa E, Tamura N (2007) Identification and characterization of microvesicles secreted by 3T3-L1 adipocytes: redox- and hormone-dependent induction of milk fat globule-epidermal growth factor 8-associated microvesicles. Endocrinology 148:3850–3862

    CAS  PubMed  Google Scholar 

  • Billingsley ML (2008) Druggable targets and targeted drugs: enhancing the development of new therapeutics. Pharmacology 82:239–244

    CAS  PubMed  Google Scholar 

  • Black PN (1980) Shedding from normal and cancer-cell surfaces. N Engl J Med 303:1415–1420

    CAS  PubMed  Google Scholar 

  • Brewis IA, Ferguson MAJ, Mehlert A, Turner AJ, Hooper NM (1995) Structures of the glycosyl-phosphatidylinositol anchors of porcine and human erythrocyte renal membrane dipeptidase. Comprehensive structural studies on the porcine anchor and interspecies comparison of the glycan core structures. J Biol Chem 270:22946–22956

    CAS  PubMed  Google Scholar 

  • Brown DA (1992) Interactions between GPI-anchored proteins and membrane lipids. Trends Cell Biol 2:338–343

    CAS  PubMed  Google Scholar 

  • Brown DA, London L (1998) Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol 14:111–136

    CAS  PubMed  Google Scholar 

  • Bütikofer P, Brodbeck U (1993) Partial purification and characterization of a (glycosyl) inositol phospholipid-specific phospholipase C from peanut. J Biol Chem 268:17794–17799

    PubMed  Google Scholar 

  • Choi SW, Lee SH, Mok H, Park TG (2010) Multifunctional siRNA delivery system: polyelectrolyte complex micelles of six-arm PEG conjugate of siRNA and cell penetrating peptide with crosslinked fusogenic peptide. Biotechnol Prog 26:57–63

    CAS  PubMed  Google Scholar 

  • Civenni G, Test ST, Brodbeck U, Bütikofer P (1998) In vitro incorporation of GPI-anchored proteins into human erythrocytes and their fate in the membrane. Blood 9:11784–11792

    Google Scholar 

  • Cocucci E, Racchetti G, Meldolesi J (2009) Shedding microvesicles: artefacts no more. Trends Cell Biol 19:43–51

    CAS  PubMed  Google Scholar 

  • Danielsen EM, Hansen GH (2006) Lipid raft organization and function in brush borders of epithelial cells. Mol Membr Biol 23:71–79

    CAS  PubMed  Google Scholar 

  • Danielsen EM, Hansen GH (2008) Lipid raft organization and function in the small intestinal brush border. J Physiol Biochem 64:377–382

    CAS  PubMed  Google Scholar 

  • Ebbesen M, Jensen TG (2006) Nanomedicine: techniques, potentials, and ethical implications. J Biomed Biotechnol. doi:10.1155/JBB/2006/51516

    PubMed Central  PubMed  Google Scholar 

  • Fevrier B, Raposo G (2004) Exosomes: endosomal-derived vesicles shipping extracellular messages. Curr Opin Cell Biol 16:415–421

    CAS  PubMed  Google Scholar 

  • Fivaz M, Vilbois F, Thurnheer S, Pasquali C, Abrami L, Bickel PE, Parton RG, van der Goot FG (2002) Differential sorting and fate of endocytosed GPI-anchored proteins. EMBO J 21:3989–4000

    CAS  PubMed Central  PubMed  Google Scholar 

  • Florez JC (2008) The genetics of type 2 diabetes: a realistic appraisal in 2008. J Clin Endocrinol Metab 93:4633–4642

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gao K, Huang L (2009) Nonviral methods for siRNA delivery. Mol Pharm 6:651–658

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gibson G (2009) Decanalization and the origin of complex disease. Nature 10:134–140

    CAS  Google Scholar 

  • Gullotti E, Yeo Y (2009) Extracellularly activated nanocarriers: a new paradigm of tumor targeted drug delivery. Mol Pharm 6:1041–1051

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hoener MC, Stieger S, Brodbeck U (1990) Isolation and characterization of a phosphatidylinositol-glycan-anchor-specific phospholipase D from bovine brain. Eur J Biochem 190:593–600

    CAS  PubMed  Google Scholar 

  • Ikezawa H (2002) Glycosylphosphatidylinositol (GPI)-anchored proteins. Biol Pharm Bull 25:409–417

    CAS  PubMed  Google Scholar 

  • Ilangumaran S, Robinson PJ, Hoessli DC (1996) Transfer of exogenous glycosylinositol (GPI)-linked molecules to plasma membranes. Trends Cell Biol 6:163–169

    CAS  PubMed  Google Scholar 

  • Janssens ACJW, Pardo MC, Steyerberg EW, van Dujin CM (2004) Revisiting the clinical validity of multiplex genetic testing in complex diseases. Am J Hum Genet 74:585–588

    CAS  PubMed Central  PubMed  Google Scholar 

  • Keller S, Sanderson MP, Stoeck A, Altevogt P (2006) Exosomes: from biogenesis and secretion to biological function. Immunol Lett 107:102–108

    CAS  PubMed  Google Scholar 

  • Kim DH, Rossi JJ (2007) Strategies for silencing human disease using RNA interference. Nat Rev Genet 8:173–184

    CAS  PubMed  Google Scholar 

  • Kirpotin DB, Drummond DC, Shao Y, Shalaby MR, Hong KL, Nielsen UB, Marks JD, Benz CC, Park JW (2006) Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res 66:6732–6740

    CAS  PubMed  Google Scholar 

  • Kooyman DL, Byrne GW, Logan JS (1998) Glycosyl phosphatidylinositol anchor. Exp Nephrol 6:148–151

    CAS  PubMed  Google Scholar 

  • Küng M, Bütikofer P, Brodbeck U, Stadelmann B (1997) Expression of intracellular and GPI-anchored forms of GPI-specific phospholipase D in COS-1 cells. Biochem Biophys Acta 1357:329–338

    PubMed  Google Scholar 

  • Li SD, Huang L (2007) Non-viral is superior to viral gene delivery. J Control Release 123:181–183

    CAS  PubMed  Google Scholar 

  • Lin YH, Mi FL, Chen CT, Chang WC, Peng SF, Liang HF, Sung HW (2007) Preparation and characterization of nanoparticles shelled with chitosan for oral insulin delivery. Biomacromolecules 8:146–152

    CAS  PubMed  Google Scholar 

  • Lindgren CM (2007) Mechanisms of disease: genetic insights into the etiology of type 2 diabetes and obesity. Nat Clin Pract 4:156–163

    Google Scholar 

  • Lisanti MP, Scherer PE, Tang ZL, Sargiacomo M (1994) Caveolae, caveolin and caveolin-rich membrane domains: a signalling hypothesis. Trends Cell Biol 4:231–238

    CAS  PubMed  Google Scholar 

  • Lusis AJ, Attie AD, Reue K (2008) Metabolic syndrome: from epidemiology to systems biology. Nat Genet 9:819–830

    CAS  Google Scholar 

  • Martin SE, Caplen NJ (2007) Development of new RNAi therapeutics. Histol Histopathol 22:211–217

    Google Scholar 

  • Mathiowitz E (2008) Drug delivery system. Toxicol Pathol 36:16–22

    PubMed  Google Scholar 

  • Mathiowitz E, Jacob JS, Jong YS, Carino GP, Chickering DE, Chaturvedi P, Santos CA, Vijayaraghavan K, Montgomery S, Bassett M, Morrell C (1997) Biologically erodable microspheres as potential oral drug delivery systems. Nature 386:410–414

    CAS  PubMed  Google Scholar 

  • Matsumara Y (2008) Polymeric micellar delivery systems in oncology. Jpn J Clin Oncol 38:793–802

    Google Scholar 

  • Mayor S, Rothberg KG, Maxfield FR (1994) Sequestration of GPI-anchor proteins in caveolae triggered by cross-linking. Science 264:1948–1951

    CAS  PubMed  Google Scholar 

  • McHugh RS, Ahmed SN, Wang Y, Sell KW, Selvavaj P (1995) Construction, purification, and functional incorporation on tumor cells of glycolipid-anchored human B7-1 (CD80). Proc Natl Acad Sci U S A 92:8059–8063

    CAS  PubMed Central  PubMed  Google Scholar 

  • McLendon PM, Fichter KM, Reineke TM (2010) Poly(glycoamidoamine) vehicles promote pDNA uptake through multiple routes and efficient gene expression via caveolae-mediated endocytosis. Mol Pharm 7:738–750

    CAS  PubMed  Google Scholar 

  • Medof ME, Nagarajan S, Tykocinski ML (1996) Cell-surface engineering with GPI-anchored proteins. FASEB J 10:574–586

    CAS  PubMed  Google Scholar 

  • Milhiet P-E, Giocondi M-C, Baghdadi O, Ronzon F, Roux B, Le Grimellec C (2002) Spontaneous insertion and partitioning of alkaline phosphatase into model lipid rafts. EMBO Rep 3:485–490

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mok H, Bae KH, Ahn C-H, Park TG (2009) PEGylated and MMP-2 specifically dePEGylated quantum dots: comparative evaluation of cellular uptake. Langmuir 25:1645–1650

    CAS  PubMed  Google Scholar 

  • Morandat S, Bortolato M, Roux B (2002) Cholesterol-dependent insertion of glycosylphosphatidylinositol-anchored enzyme. Biochim Biophys Acta 1564:473–478

    CAS  PubMed  Google Scholar 

  • Müller G (2005) The mode of action of glimepiride – beyond insulin secretion. Curr Med Chem 5:499–518

    Google Scholar 

  • Müller G (2010) Personalized prognosis and diagnosis of type II diabetes – vision or fiction? Pharmacology 85:168–187

    PubMed  Google Scholar 

  • Müller G, Frick W (1999) Signalling via caveolin: involvement in the cross-talk between phosphoinositolglycans and insulin. Cell Mol Life Sci 56:945–970

    PubMed  Google Scholar 

  • Müller G, Dearey E-A, Korndörfer A, Bandlow W (1994a) Stimulation of a glycosyl-phosphatidylinositol-specific phospholipase by insulin and the sulfonylurea, glimepiride, in rat adipocytes depends on increased glucose transport. J Cell Biol 126:1267–1276

    PubMed  Google Scholar 

  • Müller G, Wetekam E-M, Jung C, Bandlow W (1994b) Membrane association of lipoprotein lipase and a cAMP-binding ectoprotein in rat adipocytes. Biochemistry 33:12149–12159

    PubMed  Google Scholar 

  • Müller G, Jung C, Wied S, Welte S, Frick W (2001a) Insulin-mimetic signaling by the sulfonylurea glimepiride and phosphoinositolglycans involves distinct mechanisms for redistribution of lipid raft components. Biochemistry 40:14603–14620

    PubMed  Google Scholar 

  • Müller G, Jung C, Wied S, Welte S, Jordan H, Frick W (2001b) Redistribution of glycolipid raft domain components induces insulin-mimetic signaling in rat adipocytes. Mol Cell Biol 21:4553–4567

    PubMed Central  PubMed  Google Scholar 

  • Müller G, Hanekop N, Kramer W, Bandlow W, Frick W (2002a) Interaction of phosphoinositolglycan(-peptides) with plasma membrane lipid rafts of rat adipocytes. Arch Biochem Biophys 408:17–32

    PubMed  Google Scholar 

  • Müller G, Jung C, Frick W, Bandlow W, Kramer W (2002b) Interaction of phosphoinositolglycan(-peptides) with plasma membrane lipid rafts triggers insulin-mimetic signaling in rat adipocytes. Arch Biochem Biophys 408:7–16

    PubMed  Google Scholar 

  • Müller G, Schulz A, Wied S, Frick W (2005) Regulation of lipid raft proteins by glimepiride- and insulin-induced glycosylphosphatidylinositol-specific phospholipase C in rat adipocytes. Biochem Pharmacol 69:761–780

    PubMed  Google Scholar 

  • Müller G, Jung C, Wied S (2008a) Translocation of glycosylphosphatidylinositol-anchored proteins from plasma membrane microdomains to lipid droplets in rat adipocytes is induced by palmitate, H2O2 and the sulfonylurea drug, glimepiride. Mol Pharmacol 73:1513–1529

    PubMed  Google Scholar 

  • Müller G, Over S, Wied S, Frick W (2008b) Association of (c)AMP-degrading glycosylphosphatidylinositol-anchored proteins with lipid droplets is induced by palmitate, H2O2 and the sulfonylurea drug, glimepiride, in rat adipocytes. Biochemistry 47:1274–1287

    PubMed  Google Scholar 

  • Müller G, Wied S, Jung C, Over S (2008c) Translocation of glycosylphosphatidylinositol-anchored proteins to lipid droplets and inhibition of lipolysis in rat adipocytes is mediated by reactive oxygen species. Br J Pharmacol 154:901–913

    PubMed Central  PubMed  Google Scholar 

  • Müller G, Wied S, Jung C, Straub J (2008d) Coordinated regulation of esterification and lipolysis by palmitate, H2O2 and the anti-diabetic sulfonylurea drug, glimepiride, in rat adipocytes. Eur J Pharmacol 597:6–18

    PubMed  Google Scholar 

  • Müller G, Wied S, Over S, Frick W (2008e) Inhibition of lipolysis by palmitate, H2O2 and the sulfonylurea drug, glimepiride, in rat adipocytes depends on cAMP degradation by lipid droplets. Biochemistry 47:1259–1273

    PubMed  Google Scholar 

  • Müller G, Jung C, Straub J, Wied S, Kramer W (2009a) Induced release of membrane vesicles from rat adipocytes containing glycosylphosphatidylinositol-anchored microdomain and lipid droplet signalling proteins. Cell Signal 21:324–338

    PubMed  Google Scholar 

  • Müller G, Jung C, Wied S, Biemer-Daub G (2009b) Induced translocation of glycosylphosphatidylinositol-anchored proteins from lipid droplets to adiposomes in rat adipocytes. Br J Pharmacol 158:749–770

    PubMed Central  PubMed  Google Scholar 

  • Müller G, Schulz A, Dearey E-A, Wetekam E-M, Wied S, Frick W (2010a) Synthetic phosphoinositolglycans regulate lipid metabolism between rat adipocytes via release of GPI-protein-harbouring adiposomes. Arch Physiol Biochem 116:97–115

    Google Scholar 

  • Müller G, Schulz A, Hartz D, Dearey E-A, Wetekam E-M, Ökonomopulos R, Crecelius A, Wied S, Frick W (2010b) Novel glimepiride derivatives with potential as double-edged swords against type II diabetes? Arch Physiol Biochem 116:3–20

    PubMed  Google Scholar 

  • Müller G, Wied S, Jung C, Biemer-Daub G, Frick W (2010c) Transfer of glycosylphosphatidylinositol-anchored 5′-nucleotidase CD73 from adiposomes into rat adipocytes stimulates lipid synthesis. Br J Pharmacol 160:878–891

    PubMed Central  PubMed  Google Scholar 

  • Müller G, Wied S, Jung C, Frick W, Biemer-Daub G (2010d) Inhibition of lipolysis by adiposomes containing glycosylphosphatidylinositol-anchored Gce1 protein in rat adipocytes. Arch Physiol Biochem 116:28–41

    PubMed  Google Scholar 

  • Nelson KE (2010) The human microbiome jumpstart reference strains consortium (2010) a catalog of reference genomes from the human microbiome. Science 328:994–999

    CAS  PubMed  Google Scholar 

  • Nosjean O, Roux B (1999) Ectoplasmic insertion of a glycosylphosphatidylinositol-anchored protein in glycosphingolipid- and cholesterol-containing phosphatidylcholine vesicles. Eur J Biochem 263:865–870

    CAS  PubMed  Google Scholar 

  • Nosjean O, Briolay A, Roux B (1997) Mammalian GPI proteins: sorting, membrane residence and functions. Biochim Biophys Acta 1331:153–186

    CAS  PubMed  Google Scholar 

  • Orlean P, Menon AK (2007) Thematic review series: lipid posttranslational modifications. GPI anchoring of protein in yeast and mammalian cells, or: how we learned to stop worrying and love glycophospholipids. J Lipid Res 48:993–1011

    CAS  PubMed  Google Scholar 

  • Parton RG, Joggerst B, Simons K (1994) Regulated internalization of caveolae. J Cell Biol 127:1199–1215

    CAS  PubMed  Google Scholar 

  • Piccin A, Murphy WG, Smith OP (2007) Circulating microparticles: pathophysiology and clinical implications. Blood Rev 21:157–171

    CAS  PubMed  Google Scholar 

  • Poste G, Nicolson GL (1980) Arrest and metastasis of blood-born tumor cells are modified by fusion of plasma membrane vesicles from highly metastatic cells. Proc Natl Acad Sci U S A 77:399–403

    CAS  PubMed Central  PubMed  Google Scholar 

  • Premkumar DR, Fukuoka Y, Sevlever D, Brunschwig E, Rosenberry TL, Tykocinski ML (2001) Properties of exogenously added GPI-anchored proteins following their incorporation into cells. J Cell Biochem 82:234–245

    CAS  PubMed  Google Scholar 

  • Prokopenko I, McCarthy MJ, Lindgren CM (2008) Type 2 diabetes: new genes, new understanding. Trends Genet 24:613–621

    CAS  PubMed  Google Scholar 

  • Rajendran L, Knölker H-J, Simons K (2010) Subcellular targeting strategies for drug design and delivery. Nat Rev Drug Discov 9:29–42

    CAS  PubMed  Google Scholar 

  • Ridderstrale M, Groop L (2009) Genetic dissection of type 2 diabetes. Mol Cell Endocrinol 297:10–17

    PubMed  Google Scholar 

  • Ronzon F, Morandat S, Roux B, Bortolato M (2004) Insertion of a glycosylphosphatidylinositol-anchored enzyme into liposomes. J Membr Biol 197:169–177

    CAS  PubMed  Google Scholar 

  • Soussan E, Cassel S, Blanzat M, Rico-Lattes I (2009) Drug delivery by soft matter: matrix and vesicular carriers. Angew Chem Int Ed 48:274–288

    CAS  Google Scholar 

  • Stoorvogel W, Kleijmeer MJ, Geuze H, Raposo G (2002) The biogenesis and functions of exosomes. Traffic 3:321–330

    CAS  PubMed  Google Scholar 

  • Suzuki K, Okumura Y (2000) GPI-linked proteins do not transfer spontaneously from erythrocytes to liposomes. New aspects of reorganization of the cell membrane. Biochemistry 39:9477–9485

    CAS  PubMed  Google Scholar 

  • Thery C, Zitvogel L, Amigorena S (2002) Exosomes: composition, biogenesis and function. Nat Rev Immunol 3:569–579

    Google Scholar 

  • Uhrich KE, Cannizzaro SM, Langer RS, Shakesheff KM (1999) Polymeric systems for controlled drug release. Chem Rev 99:3181–3198

    CAS  PubMed  Google Scholar 

  • Varma R, Mayor S (1998) GPI-anchored proteins are organized in submicron domains at the cell surface. Nature 394:798–801

    CAS  PubMed  Google Scholar 

  • Xie FY, Woodle MC, Lu PY (2006) Harnessing in vivo siRNA delivery for drug discovery and therapeutic development. Drug Discov Today 11:67–73

    CAS  PubMed  Google Scholar 

  • Yang T, Choi MK, Cui FD, Kim JS, Chung SJ, Shim CK, Kim DD (2007) Preparation and evaluation of paclitaxel-loaded PEGylated immunoliposome. J Control Release 120:169–177

    CAS  PubMed  Google Scholar 

  • Yokoyama M (2005) Drug targeting with nano-sized carrier systems. J Artif Organs 8:77–84

    CAS  PubMed  Google Scholar 

  • Zhang F, Schmidt WG, Hou Y, Williams AF, Jacobson K (1992) Spontaneous incorporation of the glycosyl-phosphatidylinositol-linked protein Thy-1 into cell membranes. Proc Natl Acad Sci U S A 89:5231–5235

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao L (2010) The tale of our other genome. Science 465:879–880

    CAS  Google Scholar 

  • Zhu J, Lee B, Buhman KK, Cheng JX (2009) A dynamic, cytoplasmic triacylglycerol pool in enterocytes revealed by ex vivo and in vivo coherent anti-Stokes Raman scattering imaging. J Lipid Res 59:1080–1089

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günter Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Müller, G. (2015). Insulin Analogs: Assessment of Insulin Mitogenicity and IGF-I Activity. In: Hock, F. (eds) Drug Discovery and Evaluation: Pharmacological Assays. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27728-3_71-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27728-3_71-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27728-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics