Skip to main content
Log in

Mathematical reactor modelling for coupled chemical and electrochemical processes: the ECE system

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A procedure for modelling electrochemical reactions and reactors which involve heterogeneous reaction, homogeneous fast chemical reaction and diffusional mass transport is described. The procedure can be applied to any combination of first order reaction processes utilising numerical routines for the solution of initial value differential equations. By the use of collocation it can be extended to higher order processes. The reactor types considered are batch, plug flow and dynamic continuous stirred tanks and reactors with recycle. Operation with either potentiostatic, galvanostatic or constant cell voltage control is described and illustrated using the ECE reaction mechanism, involving successive electrochemical, chemical and electrochemical reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a e :

specific area of the electrode (m−1)

b :

Tafel slope (mV)

c :

concentration (kmolm−3)

d :

interelectrode gap (m)

D :

diffusion coefficient (m2 s−1)

E :

electrode potential (V)

E c :

cell voltage (V)

E e :

equilibrium potential

F :

Faraday's constant (C mol−1)

Ha:

Hatta number as in Equation 11

i :

current density (kA m−2)

i L :

mass transfer limiting current density (kA m−2)

k fi :

rate constant or coefficient (heterogeneous; (m s−1) rate constant (homogeneous) (s−1)

k Li :

mass transfer coefficient (m s−1)

N :

molar flux (kmol m−2 s−1)

n :

number of electrons transferred

Q :

flowrate (m3 s−1)

R :

recycle ratio

r :

reaction rate (kmol m−3 s−1)

t :

time (s)

V :

volume of reactor (m3)

σ:

diffusion layer thickness (m)

α:

transfer coefficient

β:

slope of kinetic polarization curve (V−1)

τ:

space time (s)

η:

over potential (V)

χ:

electrolyte conductivity (ω−1 m−1)

b:

in the bulk solution

s:

at the electrode surface

z:

distance from the electrode surface within the diffusion layer

1, 2, 3:

step number

a:

anode

c:

cathode

e:

electrode surface or reactor exit

f:

heterogeneous

i :

ith reaction or reactor inlet

j :

speciesJ

T:

total

r:

recycle loop

0:

initial value

h:

solvent decomposition

References

  1. S. W. Feldberg,in Electroanalytical Chemistry, Vol. III, (edited by A. J. Bard) Marcel Dekker, New York (1969).

  2. I. Ruzic and S. W. Feldberg,J. Electroanal. Chem. 50 (1974) 153.

    Google Scholar 

  3. D. N. Bennion,AIChE Symposium Series, No 229,79 (1983) 25.

    Google Scholar 

  4. R. Alkire and A. A. Mirarefi,J. Electrochem. Soc.,120 (1973) 1507.

    Google Scholar 

  5. ,124 (1977) 1043.

    Google Scholar 

  6. ,124 (1977) 1214.

    Google Scholar 

  7. R. Alkire and R. Gould,J. Electrochem. 123 (1976) 1842.

    Google Scholar 

  8. R. E. White, S. E. Lorimer and R. Darby,J. Electrochem. Soc. 130 (1983) 1123.

    Google Scholar 

  9. R. E. White, M. Bain and M. Raible,130 (1983) 1037.

    Google Scholar 

  10. T. V. Nguyen, C. W. Walton, R. White and J. van Zee,J. Electrochem. Soc. 133 (1986) 81.

    Google Scholar 

  11. R. C. Alkire and J. D. Lisius,J. Electrochem. Soc. 132 (1985) 1879.

    Google Scholar 

  12. J. D. Lisius, MS thesis, University of Illinois, Urbana, IL (1982).

    Google Scholar 

  13. E. K. Yung and R. C. Alkire,J. Electrochem. Soc. 132 (1985) 2341.

    Google Scholar 

  14. J. C. Yu, M. M. Baizer and K. Nobe,135 (1988) 1392.

    Google Scholar 

  15. C. Oloman and P. Reilly,134 (1987) 859.

    Google Scholar 

  16. ‘Advanced Continuous Simulation Language — User guide/Reference Manual’, 3rd edn, Mitchell and Gauthier, Concord, MA (1981) p. iii.

  17. A. N. Haines, PhD thesis, Teesside Polytechnic, UK (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scott, K., Haines, A.N. Mathematical reactor modelling for coupled chemical and electrochemical processes: the ECE system. J Appl Electrochem 24, 703–712 (1994). https://doi.org/10.1007/BF00578083

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00578083

Keywords

Navigation