Skip to main content
Log in

Effects of Acipimox on the metabolism of free fatty acids and very low density lipoprotein triglyceride

  • Preliminary Communication
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

The mechanism of triglyceride lowering by Acipimox, a nicotinic acid analogue, was examined in a group of five moderately hypertriglyceridemic male rhesus monkeys. Two experiments were designed to examine the effect of the drug on lipid and glucose metabolism in nondiabetic, insulin-resistant animals. A single dose of Acipimox (8 mg/kg) given with a meal lowered the plasma free fatty acids (FFA) significantly at 4 h (0.102±0.008 vs 0.154±0.020 g/l;\(\bar x\)±SEM;P<0.03); however, FFA concentrations returned to control levels at 6 h. Chronic administration of Acipimox (16 mg/kg q. i. d.) for 2 months produced a 31% reduction in triglyceride concentration (P<0.05) and a significant decrease in low density lipoprotein (LDL)-cholesterol (P<0.04), without changes in insulin action as measured by the hyperinsulinemic euglycemic clamp. Fasting FFA concentrations were not significantly altered by chronic treatment (0.163±0.013 versus 0.140±0.034 g/l). Fatty acid metabolic studies indicated increases in FFA transport (203.7±59.1 versus 136.1±26.6 μEq/min;P<0.05), while FFA fractional clearance rate (FCR) was unchanged. Very low density lipoprotein triglyceride (VLDL-Tg) metabolic experiments, using [3H]glycerol, showed increases in production and FCR with the drug. Increased VLDL-Tg clearance, in spite of increased production of VLDL, appears to be the mechanism by which triglycerides are lowered upon chronic Acipimox administration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrogi V, Cozzi P, Sanjust P, Bertone L, Lovisolo PP, Briatico-Vangosa G, Angelucci R, Antilipolytic activity of a series of pyrazine-N-oxides. Eur J Med Chem 15:157–163, 1980

    CAS  Google Scholar 

  2. Lovisolo PP, Briatico-Vangosa G, Orsini G, Ronchi R, Angelucci R, Valzelli G, Pharmacological profile of a new anti-lipolytic agent: 5-methyl-pyrazine-2-carboxylic acid 4-oxide (Acipimox) 1. Mechanism of action. Pharm Res Commun 13: 151–162, 1981

    CAS  Google Scholar 

  3. Sirtori CR, Gianfranceschi G, Sirtori M, Berini F, Descovich G, Montaguti U, Fuccella LM, Musatti L, Reduced triglyceridemia and increased high density lipoprotein cholesterol levels after treatment with Acipimox, a new inhibitor of lipolysis. Atherosclerosis 38:267–271, 1981

    Article  PubMed  CAS  Google Scholar 

  4. Stirling C, McAleer M, Reckless JPD, Campbell RR, Mundy D, Betteridge DJ, Foster K, Effects of Acipimox, a nicotinic acid derivative, on lipolysis in human adipose tissue and on cholesterol synthesis in human jejunal mucosa. Clin Sci 68: 83–89, 1985

    PubMed  CAS  Google Scholar 

  5. National Cholesterol Education Program Expert Panel. Report on detection, evaluation and treatment of high blood cholesterol in adults. Arch Intern Med 148:36–39, 1988

    Article  Google Scholar 

  6. Canner PL, Berge KG, Wenger NK, Stampler J, Friedman L, Prineas RJ, Friedewald W, Fifteen year mortality in coronary drug project patients: long-term benefit with niacin. J Am Coll Cardiol 8:1245–1255, 1988

    Article  Google Scholar 

  7. Tornvall P, Walldius G, A comparison between nicotinic acid and acipimox on hypertriglyceridemia-effects on serum lipids, lipoproteins, glucose tolerance and tolerability. J Intern Med 230:415–421, 1991

    PubMed  CAS  Google Scholar 

  8. Fuccella LM, Goldaniga G, Lovisolo P, Maggi E, Musatti L, Mandelli V, Sirtori CR, Inhibition of lipolysis by nicotinic acid and by Acipimox. Clin Pharm Ther 28:790–795, 1980

    Article  CAS  Google Scholar 

  9. Grundy SM, Mol HYI, Zech L, Berman M, Influence of nicotinic acid on metabolism of cholesterol and triglycerides in man. J Lipid Res 22:24–36, 1981

    PubMed  CAS  Google Scholar 

  10. Hannah JS, Bodkin NB, Hansen BC, Le N-A, Howard BV, Changes in lipoprotein concentrations during the development of noninsulin dependent diabetes mellitus in obese rhesus monkeys. J Clin Endocrinol Metabol 72:1067–1072, 1991

    CAS  Google Scholar 

  11. Hansen BC, Bodkin NL, Heterogeneity of insulin responses: phases in the continuum leading to non-insulin-dependent diabetes mellitus. Diabetologia 29:713–719, 1986

    Article  PubMed  CAS  Google Scholar 

  12. Hansen BC, Prospective study of the development of diabetes in spontaneously obese monkeys. In: Berry EM, Blondheim SH, Eliahou HE, Shafir E (eds) Recent advances in obesity research, V. John Libbey, London, pp 33–41, 1987

    Google Scholar 

  13. Bodkin NL, Metzger BL, Hansen BC, Sequential changes in hepatic glucose production and insulin sensitivity during the development of noninsulin-dependent diabetes mellitus in monkeys. Am J Physiol 256:E676-E681, 1989

    PubMed  CAS  Google Scholar 

  14. Kemnitz JW, Kraemer GW, Assessment of glucoregulation in rhesus monkeys sedated with ketamine. Am J Primatol 3: 201–210, 1982

    Article  CAS  Google Scholar 

  15. Brady AG, Kornitnik DR, The effects of ketamine anesthesis on glucose clearance in African green monkeys. J Med Primatol 14:99–107, 1982

    Google Scholar 

  16. Taskinen M-R, Bogardus C, Kennedy A, Howard BV, Multiple disturbances of free fatty acid metabolism in noninsulin-dependent diabetes. Effect of oral hypoglycemic therapy. J Clin Invest 76:637–644, 1985

    PubMed  CAS  Google Scholar 

  17. Zweems J, Frankena H, An improved method for the determination of the plasma volume with Evans Blue. J Clin Chem Clin Biochem 19:919–924, 1981

    Google Scholar 

  18. Moore FD, Determination of total body water and solids with isotopes. Science 104:157–160, 1981

    Google Scholar 

  19. Pace N, Kline L, Schachman HK, Harfenist M, Studies on body composition. IV. Use of radioactive hydrogen for measurement in vivo of total body water. J Biol Chem 168:459–469, 1947

    CAS  PubMed  Google Scholar 

  20. Howard BV, Reitman JS, Vasquez B, Zech L, Very-low-density lipoprotein triglyceride metabolism in non-insulin-dependent diabetes mellitus. Diabetes 32:271–276, 1983

    PubMed  CAS  Google Scholar 

  21. Goldberg IJ, Le N-A, Ginsberg HN, Paterniti JR Jr, Brown WV, Metabolism of apoprotein B in cynomolgus monkey: evidence for independent production of low-density lipoprotein apoprotein B. Am J Physiol 244:E196-E201, 1983

    PubMed  CAS  Google Scholar 

  22. Catheart S, Dominiczak MH, The measurement of lipoprotein subfractions in plasma using a tabletop ultracentrifuge. Ann Clin Biochem 27:459–464, 1990

    Google Scholar 

  23. Morgan CR, Lazarow A, Immunology of insulin. Two antibody system-plasma insulin levels of normal, subdiabetic and diabetic rats. Diabetes 12:115–126, 1963

    Google Scholar 

  24. Lipid Research Clinic Program. Manual of Laboratory Operations, 2nd edn. (Publication No. 75-628) US Department of Health, Education, and Welfare, Washington DC, 1982

    Google Scholar 

  25. Allain CC, Poon LS, Chan CSG, Richmond W, Fu PC, Enzymatic determination of total serum cholesterol. Clin Chem 20:470–475, 1974

    PubMed  CAS  Google Scholar 

  26. Wahlefeld A, Triglycerides: determination after enzymatic hydrolysis, 2nd English edn. Academic Press, New York, pp 1831–1835, 1974

    Google Scholar 

  27. Bachorik PS, Albers JJ, Precipitation methods for quantification of lipoproteins. Methods Enzymol 129:78–100, 1986

    PubMed  CAS  Google Scholar 

  28. Zech LA, Boston RC, Foster DM, The methodology of compartmental modeling as applied to the investigation of lipoprotein metabolism. Methods Enzymol 129:366–384, 1986

    PubMed  CAS  Google Scholar 

  29. Saloranta C, Taskinen M-R, Widen E, Harkonen M, Melander A, Groop L, Metabolic consequences of sustained suppression of free fatty acids by Acipimox in patients with NIDDM. Diabetes 42:1559–1566, 1993

    PubMed  CAS  Google Scholar 

  30. Saloranta C, Groop L, Ekstrand A, Franssila-Kallunki A, Taskinen M-R, The effect of an antilipolytic agent (acipimox) on the insulin resistance of lipid and glucose metabolism in hypertriglyceridaemic patients. Acta Diabetol 31:6–13, 1994

    Article  PubMed  CAS  Google Scholar 

  31. Franceschini G, Bernini F, Michelagnoli S, Bellosta S, Vaccarino V, Fumagalli R, Sirtoli CR, Lipoprotein changes and increased affinity of LDL for their receptors after Acipimox treatment in hypertriglyceridemia. Atherosclerosis 81:41–49, 1990

    Article  PubMed  CAS  Google Scholar 

  32. Eisenberg S, Gavish D, Oschry Y, Fainaru M, Deckelbaum RJ, Abnormalities in very low, low, and high density lipoproteins in hypertriglyceridemia: reversal toward normal with Bezafibrate treatment. J Clin Invest 74:470–482, 1984

    PubMed  CAS  Google Scholar 

  33. Saku K, Gartside PS, Hynd BA, Kashyap ML, Mechanism of action of Gemfibrozil on lipoprotein metabolism. J Clin Invest 75:1702–1712, 1985

    PubMed  CAS  Google Scholar 

  34. Garg A, Grundy SM, Nicotinic acid as therapy for dyslipidemia in non-insulin-dependent diabetes mellitus. JAMA 264: 723–726, 1990

    Article  PubMed  CAS  Google Scholar 

  35. Vaag A, Skott P, Damsbo P, Gall M-A, Richer EA, Beck-Nielsen H, Effect of the antilipolytic nicotinic acid analogue Acipimox on whole-body and skeletal muscle glucose metabolism in patients with non-insulin-dependent diabetes mellitus. J Clin Invest 88:1282–1290, 1991

    Article  PubMed  CAS  Google Scholar 

  36. Fulcher GR, Walker M, Catalano C, Agius L, Alberti KGMM, Metabolic effects of suppression of nonesterified fatty acid levels with Acipimox in obese NIDDM subjects. Diabetes 41:1400–1408, 1992

    PubMed  CAS  Google Scholar 

  37. Dulbecco A, Albenga C, Borretta G, Vacca G, Milanesi G, Lavezzari M, Effect of Acipimox on plasma glucose levels in patients with non-insulin-dependent diabetes mellitus. Curr Ther Res 46:478–483, 1989

    Google Scholar 

  38. Lavezzari M, Milanesi G, Oggioni E, Pamparana F, Results of a phase IV study carried out with Acipimox in type II diabetic patients with concomitant hyperlipoproteinemia. J Int Med Res 17:373–380, 1989

    PubMed  CAS  Google Scholar 

  39. Dean JD, McCarthy S, Betteridge DJ, Whately-Smith C, Powell J, Owens DR, The effect of Acipimox in patients with type 2 diabetes and persistent hyperlipidemia. Diabetes Med 9:611–615, 1992

    CAS  Google Scholar 

  40. Scott RS, Lintott CJ, Bremer JM, Shand B, Sutherland WHF, Improvement in atherogenic risk factors with Acipimox in noninsulin-dependent diabetic subjects. Atherosclerosis Rev 22:201–206, 1991

    Google Scholar 

  41. Fulcher GR, Catalano C, Walker M, Farrer M, Thow J, Whately-Smith C, Alberti KGMM, A double blind study of the effect of Acipimox on serum lipids, blood glucose control and insulin action in non-obese patients with type 2 diabetes mellitus. Diabetes Med 9:908–914, 1992

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hannah, J.S., Bodkin, N.L., Paidi, M.S. et al. Effects of Acipimox on the metabolism of free fatty acids and very low density lipoprotein triglyceride. Acta Diabetol 32, 279–283 (1995). https://doi.org/10.1007/BF00576264

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00576264

Key words

Navigation