Skip to main content

Advertisement

Log in

Tissue-implant interface at an absorbable fracture fixation plug made of polylactide in cancellous bone of distal rabbit femur

  • Clinical and Experimental Forum
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

The tissue-implant interface at a self-reinforced poly-l-lactide (SR-PLLA) expansion plug implanted in distal rabbit femoral cancellous bone was studied histologically, histomorphometrically, and microradiographically in 35 rabbits during consolidation of a transverse transcondylar osteotomy fixed with the SR-PLLA expansion plug. The absorbable plug for internal fixation of fractures and osteotomies measured 4.5 mm in diameter and 30 mm in length and had an expandable distal locking blade system. The femoral specimens were harvested in groups of 5–10 rabbits after a follow-up time of 3, 6, 12, and 24 weeks. The intact controlateral femur served as a control. Vigorous osteogenic response to the implant was already observed at 3 weeks postoperatively, and the osteoid surface fraction at 24 weeks was still significantly higher than in the unoperated contralateral femur. Incomplete union of the osteotomy seemed to result in increased fibrous tissue formation at the tissue-implant boundary. No signs of degradation of the SR-PLLA was observed within the entire follow-up period. The number of inflammatory cells at the tissue-implant interface was low. Consequently, the short-term biocompatibility of the implant was deemed acceptable. Clinical application of the expansion plug is being planned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Böstman O (1991) Absorbable implants for the fixation of fractures. Current concepts review. J Bone Joint Surg [Am] 73: 148–153

    Google Scholar 

  2. Böstman O, Vainionpää S, Hirvensalo E, Mäkelä A, Vihtonen K, Törmälä P, Rokkanen P (1987) Biodegradable internal fixation for malleolar fractures: a prospective randomised trial. J Bone Joint Surg [Br] 69:615–619

    Google Scholar 

  3. Böstman O, Hirvensalo E, Mäkinen J, Rokkanen P (1990) Foreign-body reactions to fracture fixation implants of biodegradable synthetic polymers. J Bone Joint Surg [Br] 72:592–596

    Google Scholar 

  4. Böstman O, Päivärinta U, Partio E, Manninen M, Vasenius J, Majola A, Rokkanen P (1992) The tissue-implant interface during degradation of absorbable polyglycolide fracture fixation screws in the rabbit femur. Clin Orthop 285:263–272

    Google Scholar 

  5. Cutright DE, Hunsuck EE (1972) The repair of fractures of the orbital floor using biodegradable polylactic acid. Oral Surg 33:28–34

    Google Scholar 

  6. Eitenmüller J, Gerlach KL, Schmickal T, Muhr G (1987) Semirigide Plattenosteosynthesen unter Verwendung absorbierbarer Polymere als temporäre Implantate. II. Tierexperimentelle Untersuchungen. Chirurg 58:831–839

    Google Scholar 

  7. Frost HM (1983) Bone histomorphometry: analysis of trabecular bone dynamics. In: Recker RR (ed) Bone histomorphometry: techniques and interpretation. CRC Press, Boca Raton, pp 109–131

    Google Scholar 

  8. Gerlach KL (1990) Treatment of zygomatic fractures with biodegradable poly (l-lactide) plates and screws. In: Heimke G, Soltész U, Lee AJC (eds) Clinical implant materials. (Advances in biomaterials, vol 9). Elsevier, Amsterdam, pp 573–578

    Google Scholar 

  9. Hollinger JO (1983) Preliminary report on the osteogenic potential of a biodegradable copolymer of polylactide (PLA) and polyglycolide (PGA). J Biomed Mater Res 17:71–82

    Google Scholar 

  10. Kulkarni RK, Pani KC, Neuman C, Leonard F (1966) Polylactic acid for surgical implants. Arch Surg 93:839–843

    Google Scholar 

  11. Majola A, Vainionpää S, Vihtonen K, Mero M, Vasenius J, Törmälä P, Rokkanen P (1991) Absorption, biocompatibility, and fixation properties of polylactic acid in bone tissue: an experimental study in rats. Clin Orthop 268:260–269

    Google Scholar 

  12. Mero M, Vainionpää S, Vasenius J, Vihtonen K, Rokkanen P (1989) Medetomidine-ketamine-diazepam anesthesia in the rabbit. Acta Vet Scand 85:135–137

    Google Scholar 

  13. Nelson JF, Stanford HG, Cutright DE (1977) Evaluation and comparisons of biodegradable substances as osteogenic agents. Oral Surg 43:836–843

    Google Scholar 

  14. Partio EK, Merikanto J, Heikkilä JT, Ylinen P, Mäkelä EA, Vainio J, Törmälä P, Rokkanen P (1992) Totally absorbable screws in fixation of subtalar extra articular arthrodesis in children with spastic neuromuscular disease: preliminary report of a randomized prospective study of fourteen arthrodeses fixed with absorbable or metallic screws J Pediatr Orthop 12:646–650

    Google Scholar 

  15. Pihlajamäki H, Böstman O, Hirvensalo E, Törmälä P, Rokkanen P (1992) Absorbable pins of self-reinforced poly-l-lactic acid for fixation of fractures and osteotomies. J Bone Joint Surg [Br] 74:853–857

    Google Scholar 

  16. Rokkanen P, Böstman O, Vainionpää S, Vihtonen K, Törmälä P, Laiho J, Kilpikari J, Tamminmäki M (1985) Biodegradable implants in fracture fixation: early results of treatment of fractures of the ankle. Lancet 1:1422–1424

    Google Scholar 

  17. Rokkanen P, Böstman O, Hirvensalo E, Mäkelä EA, Partio E, Pätiälä H, Vainionpää S, Vihtonen K, Törmälä P (1992) Utilisation des implants biodégradables dans le treaement chirurgical des fractures et au cours des ostéotomies. Orthop Traumatol 2:107–110

    Google Scholar 

  18. Rozema FR, de Bruijn WC, Bos RRM, Boering G, Nijenhuis AJ, Pennings AJ (1992) Late tissue response to bone-plates and screws of poly (l-lactide) used for fracture fixation of the zygomatic bone. In: Doherty PJ, Williams RL, Williams DF, Lee AJC (eds) Biomaterial-tissue interfaces. (Advances in biomaterials, vol 10). Elsevier, Amsterdam, pp 349–355

    Google Scholar 

  19. Schatzker J, Sanderson R, Murnaghan P (1975) The holding power of orthopaedic screws in vivo. Clin Orthop 108:116–126

    Google Scholar 

  20. Schenk R (1965) Zur histologischen Verarbeitung von unentkalkten Knochen. Acta Anat 60:3–19

    Google Scholar 

  21. Schmitz JP, Hollinger JO (1988) A preliminary study of the osteogenic potential of a biodegradable alloplastic-osteoinductive alloimplant. Clin Orthop 237:245–255

    Google Scholar 

  22. Törmälä P (1992) Biodegradable self-reinforced composite materials; manufacturing structure and mechanical properties. Clin Mater 10:29–34

    Google Scholar 

  23. Vert M, Christel P, Chabot F, Leray J (1984) Bioabsorbable plastic materials for bone surgery. In: Hastings GW, Ducheyne P (eds) Macromolecular biomaterials. CRC Press, Boca Raton, pp 119–142

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pihlajamäki, H., Böstman, O., Manninen, M. et al. Tissue-implant interface at an absorbable fracture fixation plug made of polylactide in cancellous bone of distal rabbit femur. Arch Orthop Trauma Surg 113, 101–105 (1994). https://doi.org/10.1007/BF00572915

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00572915

Keywords

Navigation