Skip to main content
Log in

Problems with the analysis of glass and glass ceramic surfaces and coatings

Analytische Probleme zu Glas- und Glaskeramik-Oberflächen und -Beschichtungen

  • Published:
Fresenius' Zeitschrift für analytische Chemie Aims and scope Submit manuscript

Summary

The investigation of the composition of the surfaces and the spatial distributions of elements and phases within subsurface layers on glasses, coatings and interfacial layers is a most important, necessary requirement to understand and to control chemical interactions between glass and glass ceramic surfaces and adjacent materials. In general, this necessary requirement can be met only by using simultaneously a couple of surface analysis methods and the analytical electron microscopy. The application of single analysis methods can be sufficient, however, if basic results are available on the physics and chemistry of glasses to complement them in order to obtain the necessary information.

Data are scarce on the free enthalpies of formation for non-crystalline materials, and, therefore, data on the free enthalpies of reaction cannot be calculated for the reactions with adjacent materials. Therefore, it is important to apply and to further develop methods to obtain data on the structures and microstructures of the crystalline and non-crystalline subsurface layer and coating materials, too. These data allow correlation of the differences in these structures with differences of the driving forces of the surface material reactions observed with adjacent phases and their reaction kinetics for the non-crystalline materials, too. Problems also arise with regard to the application of surface analysis methods, because changes of the spatial element distributions can be induced by a transfer of charge and energy to the surface during analysis. Furthermore, surface analysis methods must be improved to allow in-situ analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dunken HH (1981) Physikalische Chemie der Glasoberfläche. VEB Deutscher Verlag für Grundstoffindustrie, Leipzig

    Google Scholar 

  2. Pulker HK (1984) Coatings on glass. Elsevier, Amsterdam

    Google Scholar 

  3. Schröder H (1953) Glastech Ber 26:91–97

    Google Scholar 

  4. Schröder H (1963) Glas Email Keramo Tech 14:161–168

    Google Scholar 

  5. Schröder H, Gliemeroth G (1970) Naturwissenschaften 57:533–541

    Google Scholar 

  6. Bach H (1984) Vak-Tech 33:67–77, 99–108

    Google Scholar 

  7. Bach H, Großkopf H, March P, Rauch F (1987) Glastech Ber 60:21–30, 33–468

    Google Scholar 

  8. Chyung K (1982) In: Simmons JH, Uhlmann DR, Beall GH (eds) Advances in ceramics 4. Nucleation and crystallization in glasses. Proc of the 83rd Annual Meeting of the American Ceramic Soc, May 4–6, 1981. The American Ceramic Soc, Inc. Columbus, Ohio, pp 341–346

    Google Scholar 

  9. Bach H (1988) Glass Technol, in press

  10. Jebsen-Marwedel H, Brückner R (1980) Glastechnische Fabrikationsfehler. Springer, Berlin Heidelberg New York

    Google Scholar 

  11. Bach H, Schröder H (1967/68) Thin Solid Films 1:255–276

    Google Scholar 

  12. Paul A (1982) Chemistry of glasses. Chapman and Hall, London

    Google Scholar 

  13. CRC Handbook of Chemistry and Physics (1981–1982) 62nd edn. CRC Press, Boca Raton

  14. Babushkin VI, Matveyev GM, Mchedlov-Petrossyan OP (1985) Thermodynamics of silicates. Springer, Berlin Heidelberg New York

    Google Scholar 

  15. Shultz MM (1985) J Non-Cryst Solids 73:91–101

    Google Scholar 

  16. Müller F, in preparation

  17. Cook LM (1987) Glastech Ber 60:368–375

    Google Scholar 

  18. Jantzen CM, Plodinec MJ (1984) J Non-Cryst Solids 67:207–223

    Google Scholar 

  19. Scholze H (1985) Glastech Ber 58:116–124

    Google Scholar 

  20. Maurer C, Clark DE, Hench LL, Grambow B (1985) Nucl Chem Waste Manag 5:193–201

    Google Scholar 

  21. Schäfer J, Schaeffer HA (1984) Riv Staz Sper Vetro 5:79–82

    Google Scholar 

  22. Richter Th, Frischat GH, Borchardt G, Scherrer S, Weber S (1984) Riv Staz Sper Vetro 5:105–109

    Google Scholar 

  23. Doremus RH, Mehrotra Y, Lanford WA, Burman C (1983) J Mater Sci 18:612–622

    Google Scholar 

  24. Iler RK (1979) The chemistry of silica. Wiley, New York

    Google Scholar 

  25. Bunker BC, Arnold GW, Beauchamp EK, Day DE (1983) J Non-Cryst Solids 58:295–322

    Google Scholar 

  26. Ernsberger FM (1986) Collected papers. XIV Int Congr on Glass, New Delhi, pp 319–326

  27. Scholze H, Conradt R (1984) Riv Staz Sper Vetro 5:73–77

    Google Scholar 

  28. Cook LM, Mader KH (1987) Glastech Ber 60:234–238

    Google Scholar 

  29. Oechsner H (1984) Thin film and depth profile analysis. Topics in current physics 37. Springer, Berlin Heidelberg New York

    Google Scholar 

  30. Hren JJ, Goldstein JI, Joy DC (1979) Introduction to analytical electron microscopy. Plenum Press, New York

    Google Scholar 

  31. Benninghoven A, Rüdenauer FG, Werner HW (1987) Secondary ion mass spectrometry. Wiley, New York

    Google Scholar 

  32. Feldman LC, Mayer JW (1986) Fundamentals of surface and thin film analysis. Elsevier, North Holland, New York

    Google Scholar 

  33. Tighe NJ (1976) In: Wenk HR (ed) Experimental techniques in electron microscopy in mineralogy. Springer, Berlin Heidelberg New York

    Google Scholar 

  34. Werner HW (1984) Thin film and depth profile analysis. Topics in current physics 37. Springer, Berlin Heidelberg New York

    Google Scholar 

  35. Bach H (1983) Glastech Ber 56:1–18, 29–46, 55–62

    Google Scholar 

  36. Rauch F (1981) Analysis of hydrogen in metals by a nuclear reaction technique. In: Kraft G (ed) Analysis of nonmetals in metals. Proc Int Conf Berlin (West) June 10–13, 1980. de Gruyter, Berlin, p 151

    Google Scholar 

  37. Scholze H (1982) J Non-Cryst Solids 52:91–103

    Google Scholar 

  38. Hench LL (1982) J Phys Paris Colloq C 9 Suppl 43:625–636

    Google Scholar 

  39. Hornbogen E (1986) J Math Sci 21:3737–3747

    Google Scholar 

  40. Schmalzried H (1971) Festkörperreaktionen-Chemie des festen Zustands. Verlag Chemie, Weinheim

    Google Scholar 

  41. Dunken HH, Doremus RH (1987) J Non-Cryst Solids 92:61–72

    Google Scholar 

  42. Bach H (1973) Methodensammlung der Elektronenmikroskopie, 6. Aufl. Schimmel G, Vogell W (eds) Wissenschaftliche Verlagsgesellschaft mbH, Stuttgart

    Google Scholar 

  43. Bach H, Haspel R, Neuroth N (1976) J Phys E 9:557–559

    Google Scholar 

  44. Sigmund P (1981) Sputtering by ion bombardment. In: Behrisch R (ed) Sputtering by particle bombardment I. Springer, Berlin Heidelberg New York

    Google Scholar 

  45. Oechsner H (1983) Fresenius Z Anal Chem 314:211–214

    Google Scholar 

  46. Kelly R (1985) Surf Interface Anal 7:1–7

    Google Scholar 

  47. Kelly R, Auciello O (1984) Ion bombardment modification of surfaces. Elsevier, Amsterdam

    Google Scholar 

  48. Freund F (1986) Phys Chem Mineral 13:262–276

    Google Scholar 

  49. Anderson O, Bach H, Becker O, in preparation

  50. Bach H (1975) Radiat Eff 25:209–211

    Google Scholar 

  51. Bach H (1976) Radiat Eff 28:215–226

    Google Scholar 

  52. Werner HW, Morgan AE (1976) J Appl Phys 47:1232–1242

    Google Scholar 

  53. Kelly R (1981) Nucl Instrum Methods 182/183:351–378

    Google Scholar 

  54. Bach H, Hallwig DJ (1984) Radiat Eff 81:129–153

    Google Scholar 

  55. Mazzoldi P, Mietello A (1987) J Non-Cryst Solids 95/96:161–172

    Google Scholar 

  56. Borchardt G, Franek HJ, Scherrer H, Scherrer S, Weber S (1983) Int J Mass Spectrom Ion Phys 46:507–510

    Google Scholar 

  57. Kempf JE, Wagner HH (1984) In: Thin film and depth profile analysis. Topics in current physics 37. Springer, Berlin Heidelberg New York

    Google Scholar 

  58. Borchardt G, Scherrer H, Weber S, Scherrer S (1980) Int J Mass Spectrom Ion Phys 34:361–373

    Google Scholar 

  59. Geiger JF, Kopnarski M, Oechsner H, Paulus H (1987) Mikrochim Acta 1:497–506

    Google Scholar 

  60. Ivey DG, Piercy GR (1987) Thin Solid Films 149:73–83

    Google Scholar 

  61. Chew NG, Cullis AG (1987) Ultramicroscopy 23:175–198

    Google Scholar 

  62. Bach H, Schröder H (1969) Z Phys 224:122–125

    Google Scholar 

  63. Kienzer M, Nisch W, Jönsson C (1987) Optik 77:62–66

    Google Scholar 

  64. Bach H, Kitzmann I, Schröder H (1974) Radiat Eff 21:31–36

    Google Scholar 

  65. Bach H (1988) J Non-Cryst Solids 102:36–42

    Google Scholar 

  66. Sigmund P (1987) Nucl Instrum Methods Phys Res B 27:1–20

    Google Scholar 

  67. Pantano CG, Madey TE (1981) Appl Surface Sci 7:115–141

    Google Scholar 

  68. Adetunji J, Barber DJ (1978) J Mater Sci 13:627–638

    Google Scholar 

  69. Puglisi O, Marletta G, Torrisi A (1983) J Non-Cryst Solids 55:433–442

    Google Scholar 

  70. Crawford CK (1980) In: SEM Inc. (ed) Scanning electron microscopy. AMF O'Hare, Chicago, IV:11–26

  71. Usher DM (1981) J Phys C 14:2039–2048

    Google Scholar 

  72. Ohuchi F, Holloway PH (1982) J Vac Sci Technol 20:863–867

    Google Scholar 

  73. Vigouroux JP, Durand JP, Le Gressus C, Petite G, Agostini P, Boizian C (1985) In: SEM Inc. (ed) Scanning electron microscopy. AMF O'Hare, Chicago, I:179–182

  74. Edgell MJ, Baer DR, Castle JE (1986) Appl Surface Sci 26:129–149

    Google Scholar 

  75. Vigouroux JP, Durand JP, Le Moel A, Le Gressus C, Boizian C (1984) Nucl Instrum Methods Phys Res B1: 521–525

    Google Scholar 

  76. Puglisi O, Marletta G, Rossisi A (1986) J Non-Cryst Solids 83:344–352

    Google Scholar 

  77. Tasker GW, Uhlmann DR, Onorato PIK, Alexander MN, Struck CW (1985) Phys Paris Colloq C 8 Suppl 46:273–280

    Google Scholar 

  78. Vigouroux JP, Durand JP, Le Moel A, Le Gressus C, Griscom DL (1985) J Appl Phys 57:5139–5144

    Google Scholar 

  79. Dowsett MG, McPhail DS, Parker EHC, Fox H (1986) Vacuum 36:913–916

    Google Scholar 

  80. Magee CW (1981) Nucl Instrum Methods 191:297–307

    Google Scholar 

  81. Lee CT, Clark DE (1985) Appl Surface Sci 20:397–412

    Google Scholar 

  82. Bach H, Baucke FGK (1974) Phys Chem Glasses 15:123–129

    Google Scholar 

  83. Ghaisas SV, Malshe AP, Patil PP, Kanetkar SM, Ogale SB, Bhide VG (1987) J Appl Phys 62:2799–2802

    Google Scholar 

  84. Pandelsev KA, Wang WY (1982) J Appl Phys 53:4422–4427

    Google Scholar 

  85. Maschhoff BL, Zavadil KR, Armstrong NR (1986) Appl Surface Sci 27:285–298

    Google Scholar 

  86. Madden MC (1987) Thin Solid Films 154:43–56

    Google Scholar 

  87. Bertoti I, Mohai M, Revesz M, Alexander G (1987) Vacuum 37:129–131

    Google Scholar 

  88. Nogami M, Tomozawa M (1984) Phys Chem Glasses 25:82–85

    Google Scholar 

  89. Guenther KH (1984) Appl Opt 23:3806–3816

    Google Scholar 

  90. Greaves GN (1986) J Phys Paris Colloq C 8 Suppl vol 47

  91. Hosemann R, Hentschel MP, Schmeisser U, Bruckner R (1986) J Non-Cryst Solids 83:223–234

    Google Scholar 

  92. Goodman CHL (1985) Phys Chem Glasses 26:1–10, 27:27–31

    Google Scholar 

  93. Lehmann RL, Smyth HT (1983) Glastech Ber 56 K:1105–1111

    Google Scholar 

  94. Baucke FGK (1987) Diffusion Defect Data 53–54, 197–202

  95. Jochs W, Hoffmann HJ, Neuroth N (1988) J Non-Cryst Solids 102:255–258

    Google Scholar 

  96. Isard JO, Priestly D, Müller W (1986) Silikattechnik 37:405–409

    Google Scholar 

  97. Bartholomew RF, Hoover HL (1983) Glastech Ber 56K:671–676

    Google Scholar 

  98. Wiesenfeld JM, Stone J, Marcuse D, Burrus CA, Yang S (1987) J Appl Phys 61:5447–5454

    Google Scholar 

  99. Le Toulec M, Simmons CJ, Simmons JH (1988) J Am Ceram Soc 71:219–224

    Google Scholar 

  100. Perriere J, Pelloie B, Fogarassay E, Slaoui A (1987) Appl Surface Sci 29:433–442

    Google Scholar 

  101. Polato P, Mazzoldi P, Boscoletto AB (1987) J Am Ceram Soc 70:775–779

    Google Scholar 

  102. Schicht H, Ackermann M, Becher H (1987) Silikattechnik 38:157–160

    Google Scholar 

  103. Smay GL (1985) Glass Technol 26:46–59

    Google Scholar 

  104. Puglisi O, Torrisi A, Marletto G (1984) J Non-Cryst Solids 68:219–230

    Google Scholar 

  105. Sun YN, Feldman A, Farabaugh EN (1988) Thin Solid Films 157:351–360

    Google Scholar 

  106. Chao SS, Tagaki Y, Lucovsky G, Pai P, Custer RC, Tyler JE (1986) Appl Surface Sci 26:575–583

    Google Scholar 

  107. Alexander MN, Onorato PIK, Struck LW, Tasker GW, Uhlmann DR (1987) J Non-Cryst Solids 91:63–82

    Google Scholar 

  108. Siegbahn K (1986) Phys Bl 42:2–8

    Google Scholar 

  109. Lengeler B (1985) Z Phys B-Condensed Matter 6:421–427

    Google Scholar 

  110. Jitschin W, Werner U (1987) J Vac Sci Technol A 5:1203–1205

    Google Scholar 

  111. Keefer KD, Michalske TA (1987) J Am Ceram Soc 70:227–231

    Google Scholar 

  112. Eisenberger P, Citrin P, Hewitt R, Kincaid B (1984) In: Vanselow R, England W (eds) Chemistry and physics of solid surfaces, vol III. CRC Press Boca Raton, pp 269–285

    Google Scholar 

  113. Stöhr J (1985) Z Phys B 61:439–445

    Google Scholar 

  114. Greaves GN, Fontaine A, Lagarde P, Raoux D, Gurman SJ (1981) Nature 293:611–616

    Google Scholar 

  115. Mayer V, Frahm R (1988) Glastech Ber, in press

  116. Dumas T, Petiau J (1986) J Non-Cryst Solids 81:201–220

    Google Scholar 

  117. Temple P, Phalippou J, Jones DJ (1987) Phys Chem Glasses 28:250–256

    Google Scholar 

  118. Greaves GN (1986) J Phys Paris Colloq C 8 Suppl 47:819–824

    Google Scholar 

  119. Barren NT, Antonini GM, Greaves GN, Thornley FR, Manara A (1986) J Phys Paris Colloq C 8 Suppl 47:879–882

    Google Scholar 

  120. Thornley FR, Antonini GM, Greaves GN, Barrett NT (1986) J Phys Paris Colloq C 8 Suppl 47:883–886

    Google Scholar 

  121. Blum L, Abruña HD, White J, Gordon II JG, Borges GL, Samant MG, Melroy OR (1986) J Chem Phys 85:6732–6738

    Google Scholar 

  122. Hayes KF, Roe AL, Brown GE Jr, Hodgson KO, Leckie JO, Parks GA (1987) Science 238:783–786

    Google Scholar 

  123. McBreen J, O'Grady WE, Pandya KI, Hoffmann RW, Sayers DE (1987) Langmuir 3:428–433

    Google Scholar 

  124. Joy DC (1979) In: Hren JJ, Goldstein JI, Joy DC (eds) Introduction to analytical electron microscopy. Plenum Press, New York, pp 223–244

    Google Scholar 

  125. Maher DM (1979) In: Hren JJ, Goldstein JI, Joy DC (eds) Introduction to analytical electron microscopy. Plenum Press, New York, pp 259–294

    Google Scholar 

  126. Costa JL, Joy DDC, Maher DM, Kirk K, Hui S (1978) Science 200: 537–539

    Google Scholar 

  127. Valeri S, del Pamino U, Ottaviani G, Sassaroli P, Tu KN (1986) Solid State Commun 60:569–573

    Google Scholar 

  128. Baker RTK, Chlidzinski JJ Jr, Sherwood RD (1987) J Mater Sci 22:3831–3842

    Google Scholar 

  129. Bach H (1988) J Non-Cryst Solids 102:43–49

    Google Scholar 

  130. Geffcken W, Berger E (1938) Glastech Ber 16:296–304

    Google Scholar 

  131. Schwarz R (1926) Z Elektrochem 34:415–419

    Google Scholar 

  132. Willstätter R, Krant H, Lobinger K (1929) Ber Dtsch Chem Ges 62:2027–2034

    Google Scholar 

  133. Tomozawa M (1985) Commun Am Ceram Soc C-251-C-252

  134. Scherer GW, Drexhage MG (1985) J Am Ceram Soc 68: 419–426

    Google Scholar 

  135. Brown NJ (1986) Am Rev Mater Sci 16:371–388

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bach, H. Problems with the analysis of glass and glass ceramic surfaces and coatings. Z. Anal. Chem. 333, 373–382 (1989). https://doi.org/10.1007/BF00572329

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00572329

Keywords

Navigation