Skip to main content
Log in

Design methodology approach for flexible grippers

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

This paper presents a design methodology approach for flexible or not flexible gripper systems composed by one or several actuators. This approach takes into account grasped object geometrical parameters and task constraints to compute the ‘best’ grasping configuration and to determine the mechanism of the gripper. The main goal of this method is to prove an efficient designer aid under economic constraints especially in time aspect, and also to prove quickly the application viability.

In this paper, this procedure is detailed and an example is given to illustrate it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. André, P., Kauffman, J. M., Lhote, F., and Taillard, J. P.:Les robots: Constituants technologique, Hermes, Paris, 1983.

    Google Scholar 

  2. Bracken, F. L.: Parts classification and gripper design for Automatic handling and assembly, in T. Pham and W. B. Heginbotham (eds),Robot Grippers, Springer-Verlag, Berlin, 1986, pp. 27–34.

    Google Scholar 

  3. Ceccarelli, M., Gradani, G., and Papa, L.: On the design of driving mechanisms in two-finger grippers, in23rd Int. Symp. Industrial Robot, ISIR, Barcelona, 6–9 Oct. 1992, pp. 568–571.

  4. Chelpanov, I. B. and Kolpashnikow, S. N.: Problems with the mechanics of industrial robot grippers, in T. Pham and W. B. Heginbotham (eds),Robot Grippers, Springer-Verlag, Berlin, 1986, pp. 35–44.

    Google Scholar 

  5. Chen, F. Y.: Gripping mechanisms for industrial robots,Mechanism and Machine Theory 17(5) (1982), 299–311.

    Google Scholar 

  6. Cheng, F. T. and Orin, D. E.: Optimal force distribution in multiple-chains Robotic systems,IEEE Transaction on Systems, Man and Cybernetics 21(1) (Jan/Feb 1991), 13–24.

    Google Scholar 

  7. Ferrari, C. and Canny, J.: Planning optimal grasps, inIEEE Int. Conf. Robotics and Automation, Nice, France, 1992, pp. 2290–2295.

  8. Gorce, P., Bidaud, P., and Picard, M.: Design of an autonomous robot gripper,Proc. 4th Int. Symp. Robotics and Manufacturing, ISRAM '92, Santa Fe, Nov. 1992.

  9. Gorce, P., Villard, C., Fontaine, J. G., and Bidaud, P.: Computer aided design for polyvalent grippers systems, inIEEE/SMC Int. Conf. Systems, Man and Cybernetics, Vol. 1, Le Touquet, France, 1993, pp. 226–232.

  10. Gorce, P., Villard, C., and Fontaine, J. G.: Computer aided design for grippers, inEURISCON'94, Eur. Robotics and Intelligent Systems Conf., Malaga, Spain, 1994, pp. 526–533.

  11. Groover, M. P., Weiss, M., Nagel, R. N., and Odrey, N. G.:Industrial Robotics Technology, Programming and Application, (Int. Edn), McGraw-Hill, New York, 1986.

    Google Scholar 

  12. Hanafusa, H. and Asada, H.: Stable prehension by a robot hand with elastic fingers, inInt. Symp. Industrial Robot, 7th ISIR, Tokyo, Japan, 1977, pp. 361–368.

  13. Kerr, J. and Roth, R.: Analysis of multifingered hands,Int. J. Robotics Res. 4(4) (1986), 3–17.

    Google Scholar 

  14. Li, Z. and Sastry, S.: Dexterous robot hands: several important issues, inProc. IEEE Int. Conf. Robotics and Automation, Philadelphia, April 1988, pp. 68–108.

  15. Li, Z., Hsu, P., and Sastry, S.: Grasping and coordinated manipulation by a multifingered robot hand,Int. J. Robotics Res. 8(4) (August (1989)), 33–50.

    Google Scholar 

  16. Mannaa, A. R., Akyurt, M., and El Kalay, A. K.: Optimum design of force-intensifying concentric gripper for industrial robots,Int. Robotics and Automation 5(3) (1990), 101–106.

    Google Scholar 

  17. Mannaa, A. R., Akyurt, M., and El Kalay, A. K.: Enhanced gripping mechanisms for Industrial robots,Int. J. Robotics and Automation 6(3) (1991), 156–160.

    Google Scholar 

  18. Markenskoff, X. and Papadimitriou, C. H.: Optimum grip of a polygon,Int. J. Robotics Res. 8(2) (1989), 17–29.

    Google Scholar 

  19. Montana, D. J.: Contact stability for two-fingered grasps,IEEE Trans. Robotics and Automation 8(4), (August 1992), 412–430.

    Google Scholar 

  20. Nguyen, V.: The synthesis of the stable grasp in the plan, inIEEE Int. Conf. Robotics and Automation, San Francisco, 1986, pp. 884–889.

  21. Parck, Y. C. and Starr, G. P.: Grasp synthesis of polygonal objects using a three-fingered robot hand,Int. J. Robotics Res. 11(3) (June 1992), 163–184.

    Google Scholar 

  22. Podhorodeski, R. P., Goldenberg, A. A., and Fenton, R. F.: Analytical bases for the contact forces leading to internal forces for point friction contact grasps,Proc. Conf. Applied Mechanism and Robotics, Cincinnati, Nov. 1989.

  23. Raghavan, M.: Analytical methods for designing linkages to match force specifications, D. P. Thesis, Stanford University, Department of Mechanical Engineering, March 1989.

  24. Tanie, K.: Design of robot hands, in: N.O.T.S.F. (ed.),Handbook of Industrial Robotics, Chap. 8, Willey, New York, 1985, pp. 112–137.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorce, P., Fontaine, J.G. Design methodology approach for flexible grippers. J Intell Robot Syst 15, 307–328 (1996). https://doi.org/10.1007/BF00572265

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00572265

Key words

Navigation