Skip to main content
Log in

On the localization of sarcotubular ATPase activity in mammalian skeletal muscle

  • Published:
Histochemie Aims and scope Submit manuscript

Summary

ATPase activity of the sarcoplasmic reticulum has been demonstrated at the level of the light microscope. Although this membrane system is usually viewed as ultrastructural in its dimensions, it was possible to identify sarcotubular enzymic activity in frozen sections. In skeletal muscle fibers of the rat diaphragm, sarcotubular ATPase can be distinguishedin situ from ATPases associated with mitochondria and myofibrils. This is possible because chemical properties are more readily analyzed in frozen sections than in material prepared for electron microscopy. Pour different ATPases have thus been localized in skeletal muscle fibers by taking advantage of differences in the pH optima of these enzymes and in their response to various inhibitors and activators. The following cytochemical and morphological features have been demonstrated:

  1. 1.

    While both mitochondrial and sarcotubular ATPases are active at pH 7.2 in the presence of cysteine, only mitochondrial ATPase activity survives when cysteine is replaced with the mercurial compound, PHMB. Two sarcotubular ATPases, on the other hand, survive formalin fixation under conditions which inhibit mitochondrial ATPase. Myofibrillar ATPase is also demonstrated in the presence of cysteine, but the pH optimum is closer to 9.4. This enzyme is both sulfhydryl dependent and formalin sensitive.

  2. 2.

    Although the spatial distribution of mitochondria and of sarcoplasmic reticulum in mammalian skeletal muscle fibers is similar, ATPases associated with these organelles can be distinguished by taking advantage of their differential response to mercurial and to formalin. In transverse section, sarcotubular ATPase activity is associated with a distinct, more or less continuous network surrounding myofibrils. This pattern differs from that formed by mitochondria, which are disposed in a less continuous array of filaments and granules. In longitudinal section, activity occurs at the site of the triads of the sarcoplasmic reticulum. If sections are fixed with formalin prior to incubation, an additional site of activity appears in the region of the H band. The morphological distribution of these two sarcotubular ATPases is distinguishable from that of both mitochondrial and myofibrillar ATPases.

These results suggest the possibility that the two sites of sarcotubular activity reflect two different roles of ATPase in this membrane system. Activity at the triads might be involved indirectly in making available the calcium necessary for muscular contraction, that is, by binding calcium which can be released at the time of contraction. Activity at the H bands might be more directly involved in the rebinding of calcium leading to relaxation of the muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cooper, C.: The stimulation of adenosine triphosphatase in submitochondrial particles by sulfhydryl reagents. J. biol. Chem.235, 1815–1819 (1960).

    Google Scholar 

  • Costantin, L. L., C. Franzini-Armstrong, andR. J. Podolsky: Localization of calcium-accumulating structures in striated muscle fibers. Science147, 158–160 (1965).

    Google Scholar 

  • Engel, A. G., andL. W. Tice: Cytochemistry of phosphatases of the sarcoplasmic reticulum. I. Biochemical studies. J. Cell Biol.31, 473–487 (1966).

    Google Scholar 

  • Engel, W. K.: Adenosine triphosphatase of sarcoplasmic reticulum triads and sarcolemma identified histochemically. Nature (Lond.)200, 588–589 (1963).

    Google Scholar 

  • Engelhardt, W. A., andM. N. Ljubimowa: Myosin and adenosine triphosphatase. Nature (Lond.)144, 668–669 (1939).

    Google Scholar 

  • Essner, E., A. B. Novikoff, andN. Quintana: Nucleoside phosphatase activities in rat cardie muscle. J. Cell Biol.25, 201–215 (1965).

    Google Scholar 

  • Fawcett, D. W., andJ. P. Revel: The sarcoplasmic reticulum of a fast-acting fish muscle. J. biophys. biochem. Cytol.10, Suppl., 89–109 (1961).

    Google Scholar 

  • Gauthier, G. F., andH. A. Padykula: Cytochemical studies of adenosine triphosphatase activity in the sarcoplasmic reticulum. J. Cell Biol.27, 252–260 (1965).

    Google Scholar 

  • ——: Cytological studies of fiber types in skeletal muscle. J. Cell Biol.28, 333–354 (1966).

    Google Scholar 

  • Giacomelli, F., C. Bibbiani, E. Bergamini, andC. Pellegrino: Two ATPases in the sarcoplasmic reticulum of skeletal muscle fibers. Nature (Lond.)213, 679 (1967).

    Google Scholar 

  • Gillis, J. M., andS. G. Page: Localization of ATPase activity in striated muscle and probable sources of artifact. J. Cell Sci.2, 113–118 (1967).

    Google Scholar 

  • Hasselbach, W.: ATP-driven active transport of calcium in the membranes of the sarcoplasmic reticulum. Proc. roy. Soc. B160, 501–504 (1964).

    Google Scholar 

  • —, andL. -G. Elfvin: Structural and chemical asymmetry of the calcium-transporting membranes of the sarcotubular system as revealed by electron microscopy. J. Ultrastruct. Res.17, 598–622 (1967).

    Google Scholar 

  • —, u.M. Makinose: Die Calciumpumpe der Erschlaffungsgrana des Muskels und ihre Abhängigkeit von der ATP-Spaltung. Biochem. Z.333, 518–528 (1961).

    Google Scholar 

  • —, andK. Seraydarian: The role of sulfhydryl groups in calcium transport through the sarcoplasmic membranes of skeletal musle. Biochem. Z.345, 159–172 (1966).

    Google Scholar 

  • Hecht, A., undG. Korek: Die Beeinflussung der histochemisch nachweisbaren ATPase- Aktivität unter verschiedenen Versuchsbedingungen beim Vergleich der Casowie Pb- Methode bei pH 7,5 bzw. 7,2. Histochemie6, 95–107 (1966).

    Google Scholar 

  • Karnovsky, M. J.: Simple methods for “staining with lead” at high pH in electron microscopy. J. biophys. biochem. Cytol.11, 729–732 (1961).

    Google Scholar 

  • Kielley, W. W., andO. Meyerhof: Studies on adenosinetriphosphatase of muscle. II. A new magnesium-activated adenosinetriphosphatase. J. biol. Chem.176, 591–601 (1948).

    Google Scholar 

  • Krüger, P., u.P. G. Günther: Das „Sarkoplasmatische Reticulum” in den quergestreiften Muskelfasern der Wirbeltiere und des Menschen. Acta anat. (Basel)28, 135–149 (1956).

    Google Scholar 

  • Martonosi, A., andR. Feretos: Sarcoplasmic reticulum. I. The uptake of Ca++ by sarcoplasmic reticulum fragments. J. biol. Chem.239, 648–658 (1964A).

    Google Scholar 

  • ——: Sarcoplasmic reticulum II. Correlation between adenosine triphosphatase activity and Ca++ uptake. J. biol. Chem.239, 659–668 (1964B).

    Google Scholar 

  • Muscatello, U., E. Andersson-Cedergren, G. F. Azzone, andA. Vonder Decken: The sarcotubular system of frog skeletal muscle. A morphological and biochemical study. J. biophys. biochem. Cytol.10, Suppl., 201–218 (1961).

    Google Scholar 

  • Novikoff, A. B., andB. Masek: Survival of lactic dehydrogenase and DPNH-diaphorase activities after formol-calcium fixation. J. Histochem. Cytochem.6, 217 (1958).

    Google Scholar 

  • Padykula, H. A., andG. F. Gauthier: Cytochemical studies of adenosine triphosphatases in skeletal muscle fibers. J. Cell Biol.18, 87–107 (1963).

    Google Scholar 

  • — Morphological and cytochemical characteristics of fiber types in normal mammalian skeletal muscle. Proc. Arden House Conf. sponsored by the Muscular Dystrophy Associations of America (A. T. Milhorat, ed.). (In press) (1967).

  • —, andE. Herman: The specificity of the histochemical method for adenosine triphosphatase. J. Histochem. Cytochem.3, 170–195 (1955).

    Google Scholar 

  • Porter, K. R., andG. E. Palade: Studies on the endoplasmic reticulum III. Its form and distribution in striated muscle cells. J. biophys. biochem. Cytol.3, 269–300 (1957).

    Google Scholar 

  • Pullman, M. E., H. S. Penefsky, A. Datta, andE. Racker: Partial resolution of the enzymes catalyzing oxydative phosphorylation. I. Purification and properties of soluble dinitrophenol-stimulated adenosine triphosphatase. J. biol. Chem.235, 3322–3329 (1960).

    Google Scholar 

  • Reynolds, E. S.: The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol.17, 208–212 (1963).

    Google Scholar 

  • Sommer, J. R., andW. Hasselbach: The effect of glutaraldehyde and formaldehyde on the calcium pump of the Sarcoplasmic reticulum. J. Cell. Biol.34, 902–905 (1967).

    Google Scholar 

  • Sommer, J. R., andM. S. Spach: Electron microscopic demonstration of adenosinetriphosphatase in myofibrils and Sarcoplasmic membranes of cardiac muscle of normal and abnormal dogs. Amer. J. Path.44, 491–505 (1964).

    Google Scholar 

  • Tice, L. W., andR. J. Barrnett: Fine structural localization of adenosinetriphosphatase activity in heart muscle myofibrils. J. Cell Biol.15, 401–416 (1962).

    Google Scholar 

  • —, andA. G. Engel: Cytochemistry of phosphatases of the Sarcoplasmic reticulum. II. In situ localization of the MG-dependent enzyme. J. Cell Biol.31, 489–499 (1966).

    Google Scholar 

  • —, andD. S. Smith: The localization of myofibrillar ATPase activity in the flight muscles of the blowfly,Calliphora erythrocephala. J. Cell Biol.25, 121–135 (1965).

    Google Scholar 

  • Veratti, E.: Investigations on the fine structure of striated muscle fiber (English translation of 1902 paper byBruni, Bennett, andDe Koven). J. biophys. biochem. Cytol.10, Suppl., 3–59 (1961).

    Google Scholar 

  • Voyle, C. A., andR. A. Lawrie: The demonstration of Sarcoplasmic reticulum in bovine muscle. J. roy. micr. Soc.82, 173–177 (1964).

    Google Scholar 

  • Wachstein, M., andE. Meisel: Histochemistry of hepatic phosphatases at a physiologic pH. Amer. J. clin. Path.27, 13–23 (1957).

    Google Scholar 

  • Weber, A., R. Herz, andI. Reiss: The regulation of myofibrillar activity by calcium. Proc. roy. Soc. B.160, 489–501 (1964).

    Google Scholar 

  • Zebe, E.: Zur Lokalisation ATP-spaltender Reaktionen im “Sarcoplasmatischen Reticulum” quergestreifter Muskeln. Histochemie5, 32–43 (1965).

    Google Scholar 

  • —, u.H. Falk: Elektronenmikroskopische Lokalisation ATP-spaltender Reaktionen in quergestreiften Muskeln. Exp. Cell Res.31, 340–344 (1963).

    Google Scholar 

  • ——: Über die Spaltung von Adenosintriphosphat in isolierten Myofibrillen aus Insektenflugmuskeln. Histochemie4, 161–180 (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gauthier, G.F. On the localization of sarcotubular ATPase activity in mammalian skeletal muscle. Histochemie 11, 97–111 (1967). https://doi.org/10.1007/BF00571715

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00571715

Keywords

Navigation