Skip to main content
Log in

The possibilities of neural holographic processes within the brain

  • Published:
Kybernetik Aims and scope Submit manuscript

Summary

A theory of brain functioning is proposed based upon an analogy to optical holographic processes. There are many properties which holography potentially offers to neurophysiology. Chief among these is the property of distributedness, which is displayed only by holographic processes. This property, an attribute of certain types of holograms, permits any small portion of the hologram to reconstruct the entire original scene recorded by the hologram. Because of this fact and other supporting evidence, neural versions of the holographic processes appear as most promising candidates for the coding of sensory and memory processes.

It is demonstrated that mathematical models based on known elementary neurophysiological processes can embrace “neural-holographic processes”. This is done in terms of equations from optical holography which are discretized in space and time and are suitably transformed to account for the substitution of neural-pulse waveforms in the place of the sinusoidal oscillations involved in optical holography. The possible or probable differences between optical and neural holographic processes are then examined in detail. The various types of holographic processes are considered as to their suitability as paradigms for the neural processes. Fourier-transform holography appears to be the most suitable type for initial neural holographic models.

An exploration of the possible correspondences or isomorphisms between the state space of the holographic process and the plausible state spaces of the neural coding process has been initiated. The most probable pairing at the level of the hologram appears to be: first, the correspondence of the electromagnetic oscillation phase with the neural interspike interval; and second, the correspondence of amplitude with neural impulse height. If necessary, the impulse height at the neural hologram could be restricted to binary values of pulse-no pulse, still permitting a coding of the complete intensity scale of “grays” present in the reconstructed image of the original stimulus object. There is neurophysiological evidence indicating the possibility that the impulse height present in the stimulus object plane could be coded in terms of the impulse coherence-incoherence dimension, which would fit nicely into neural-holographic processes.

Additional holographic properties are detailed and examined. When this is done collectively, it is concluded that:

  1. 1.

    Holography offers the only known truly distributed coding — thus implicitly obeying Lashley's laws in at least one formulation.

  2. 2.

    While translation and size-invariant pattern-recognition, one type of memory associativity, and three-dimensional, color and motion preserving imaging are capable of being accomplished in other ways, holography presents the only known method of doing so with the distributed characteristic.

  3. 3.

    Holography presents the only known way of producing one of the three types of image associativity. This particular type is a general type of associativity in which the basis of association is specific only in terms of the simultaneity of perceived events.

This hypothesis is discussed in terms of previously-formulated wave interference theories of brain functioning. It is pointed out that the holographic point of view is basic to a complete discussion of any waveinterference theory.

Some psychophysical and neurophysiological evidence for this hypothesis is examined. The principal evidence for such a hypothesis comes from: 0) recordings of single cell activity from Area 17 of the monkey; 1) animal brain lesion work (this work presents some of the evidence that visual and auditory processes are “distributed” in at least one stage of the processing); 2) examination of brain-damaged human beings (it is pointed out that neural-holographic processes offer possible explanations formacular sparing andpolyopia); 3) general evidence for coherent pulse activity; and 4) some evidence of neural connectivity which would be suitable for neural holographic processes. Further approaches to experimental verification are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Bibliography

  • Arden, G. B., Liu, Y.-M.: Some responses of the lateral geniculate body of the rabbit to flickering light stimuli. Acta physiol. scand.48, 49–62 (1960).

    Google Scholar 

  • Attneave, F.: Comments — in defense of homonculi. Sensory communication (Walter A. Rosenblith, ed.). New York: John Wiley & Sons 1961.

    Google Scholar 

  • Baez, Albert V.: Resolving power in diffraction microscopy with special reference to X-rays. Nature (Lond.)169, 963–964 (1952).

    Google Scholar 

  • Barrett, T. W.: Prolegemena to an aesthetic. Math. Biosci.3, Nos. 3/4, October (1968).

  • Beach, F. A., Hebb, D. O., Morgan, C. T., Nissen, H. W., (eds.): The neuropsychology of Lashley; selected papers of K. S. Lashley. New York: McGraw-Hill Book Company 1960.

    Google Scholar 

  • Békésy, G. von: Talk given at University of California at Los Angeles. Fall, 1965.

  • — Sensory inhibition. Princeton, New Jersey: Princeton University Press 1967.

    Google Scholar 

  • Bekey, G. A.: Sampled data models of the human operator in a control system. Ph. D. Dissertation, University of California, Los Angeles, California, January, 1962.

    Google Scholar 

  • Beran, M. J., Parrent, G. P., Jr.: Theory of partial coherence. Englewood Cliffs, New Jersey: Prentice-Hall, Inc. 1964.

    Google Scholar 

  • Beurle, R. L.: Properties of a mass of cells capable of regenerating pulses. Trans. roy. Soc. LondonB 240, 55–94 (1956).

    Google Scholar 

  • - Storage and manipulation of information in the brain. J. IEE5, February (1959).

  • —: Functional organization in random networks. In: Principles of self organization (eds. H. von Foerster and G. W. Zopf, Jr.), p. 291. New York: Pergamon 1962a.

    Google Scholar 

  • —: Information in random networks. In: Aspects of the theory of artificial intelligence (ed. C. A. Muses), p. 19. New York: Plenum 1962b.

    Google Scholar 

  • Bishop, P.O., Levick, W. R., Williams, W. O.: Statistical analysis of the dark discharge of lateral geniculate neurons. J. Physiol. (Lond.)170, 598–612 (1964).

    Google Scholar 

  • Boring, E. G.: Opening address to Symposium on Principles of Sensory Communication, M.I.T., August, 1959. Reported in: Sensory communication (Walter A. Rosenblith, ed.). New York: John Wiley & Sons 1961.

    Google Scholar 

  • Born, M., Wolf, E.: Principles of optics, third ed. New York: Pergamon Press 1965.

    Google Scholar 

  • Bullock, T. H.: Neuron doctrine and electrophysiology. Science129, No 3355 (1959).

  • —, Horridge, G. A.: Structure and function in the nervous systems of invertebrates, vol. I and II. San Francisco: W. H. Freeman 1965.

    Google Scholar 

  • Chambers, R. P., Courtney-Pratt, J. S.: Bibliography on holograms. Jour. Soc. Mot. Pictures and Television Eng.75, April (1966a).

  • Chambers, R. P.: Bibliography on holograms, part II. J. Soc. Mot. Pictures and Television Eng.75, August (1966b).

  • Chambers, R. P.: Bibliography on holograms, part III. J. Soc. Mot. Pictures and Television Eng.76, April (1967).

  • Cochran, W. T., Cooley, J. W., Favin, D. L., Helms, H. D., Kaenel, R. A., Lang, W. W., Maling, G. C., Jr., Nelson, D. E., Rader, C. M., Welch, P. D.: What is the fast Fourier transform? Proc. IEEE55, No 10 (1967).

  • Collier, R. J.: Some current views on holography. IEEE Spectrum3, 67–74 (1966).

    Google Scholar 

  • Cooley, J. W., Lewis, P. A. W., Welch, P. D.: Historical notes on the fast Fourier transform. Proc. IEEE55, 10 (1967).

    Google Scholar 

  • Cutrona, L. J., Leith, E. N., Palermo, C. J., Porciello, L.J.: Optical data processing and flitering systems. IRE Trans. on Information TheoryIT-6, 386–400 (1960).

    Google Scholar 

  • De Vellis, J. B., Reynolds, G. O.: Theory and application of holography. Menlo Park, California: Addison-Wesley Publishing Company 1967.

    Google Scholar 

  • Diamond, F. I.: Magnification and resolution in wavefron-treconstruction imaging. J. opt. Soc. Amer.57, 503–508 (1967).

    Google Scholar 

  • Diamond, I. T., Goldberg, J. M., Neff, W. D.: Tonal discrimination after ablation of auditory cortex. J. Neurophysiol.25, 223–235 (1962).

    Google Scholar 

  • Ditchburn, R. W.: Light, second ed. New York: John Wiley & Sons, Inc. 1963.

    Google Scholar 

  • Eccles, J.: The brain and the person. The Boyer lectures, 1965, printed by E. S. Perry & Sons Pty. Ltd., 162 Marrickville Road, Marrickville, for the publishers. The Australian Broadcasting Commission, p. 145–149, Elizabeth Street, Sydney, N.S.W., Australia (price 20 C).

    Google Scholar 

  • Elias, P., Grey, D. S., Robinson, D. S.: Fourier treatment of optical processes. J. opt. Soc. Amer.42, 127–134 (1952).

    Google Scholar 

  • El-Sum, H. M. A.: Reconstructed wavefront microscopy. Ph. D. Dissertation, Stanford University, Stanford, California. November, 1952; available from University Microfilms, Inc., Ann Arbor, Michigan (Dissertation Abstracts 4663, 1953),

    Google Scholar 

  • Fender, D.: Conversation July 6, 1969, in which Professor Fender stated that in some of his recent experiments on pattern recognition small volumes of area 18 in man showed definite coherence — not only in time but in spatial orientation these experiments depended upon taking the second differences of the evoked potentials in space and time in order to solve the wave equation with a Poisson current term. (See also Lehmann et al., 1969).

  • Gabor, D.: A new microscopic principle. Nature (Lond.)161, 777 (1948).

    Google Scholar 

  • —: Microscopy by reconstructed wavefronts. Proc. roy. Soc. A197, 454–487 (1949).

    Google Scholar 

  • —: Microscopy by reconstructed wavefronts. II. Proc. phys. Soc. B64, 449–469 (1951).

    Google Scholar 

  • —: Holographic model of temporal recall. Nature (Lond.)217, 584 (1968a).

    Google Scholar 

  • —: Improved holographic model of temporal recall. Nature (Lond.)217, 1288 (1968b).

    Google Scholar 

  • —: Associative holographic memories. IBM J. Res. Develop.13, 2 (1969).

    Google Scholar 

  • Galambos, R., Norton, Th. T., Frommer, G. P.: Optic tract lesions sparing pattern vision in cats. Exp. Neurol.18, 8–25 (1967).

    Google Scholar 

  • Gerard, R. W.: Neurophysiology: An integration, chap. LXXXI, in: Handbook of physiology, sect. I, vol. III, Neurophysiology. Washington, D. C.: American Physiological Society 1960.

    Google Scholar 

  • Goldscheider, A.: Über die materiellen Veränderungen bei der Assoziationsbildung. Neurol. Zbl.25, 146 (1906).

    Google Scholar 

  • Goodman, J. W.: Introduction to Fourier optics. New York: McGraw-Hill Book Company 1968.

    Google Scholar 

  • Harmon, L. D., Lewis, E. R.: Neural modeling. Physiol. Rev.46, 513–591 (1966).

    Google Scholar 

  • Harrington, D. O.: The visual fields: A textbook and atlas of clinical perimetry, 2nd ed. St. Louis: Mosby 1964.

    Google Scholar 

  • Hebb, D. O.: Organization of behavior. New York: John Wiley & Sons, Inc. 1961 (paperback).

    Google Scholar 

  • Heerden, P. J. van: Theory of optical information storage in solids. Appl. Opt.2, 393–400 (1963).

    Google Scholar 

  • Heiss, W. D., Bornschein, H.: Multimodale Intervall-Histogramme der Daueraktivität von retinalen Neuronen der Katze. Kybernetik3, H. 4 (1966).

    Google Scholar 

  • Horman, M. H., Chau, H. H. M.: Zone plate theory based on holography. Applied Optics6, No 2 (1967).

  • Horton, L. H.: The dream problem, p. 115–169. Philadelphia 1925.

  • Hubel, D. H., Wiesel, T. N.: Receptive fields of single neurons in cat striate cortex. J. Physiol. (Lond.)148, 574–591 (1959).

    Google Scholar 

  • Jacobson, H.: Informational capacity of the human eye. Science113, 292–293 (1951).

    Google Scholar 

  • John, E. R.: Mechanisms of memory. New York: Academic Press 1967.

    Google Scholar 

  • Julesz, B., Pennington, K. S.: Equidistributed information mapping: An analogy to holograms and memory. J. opt. Soc. Amer.55, 604 (1965).

    Google Scholar 

  • Kallard, T. (ed.): Holography: State of art review ... 1969. Available from Optosonic Press, Box 883, Ansonia Post Office, New York, New York 10023. 1969.

    Google Scholar 

  • Kock, W. E.: Lasers and holography. Garden City, New York: Doubleday 1969 (paperback).

    Google Scholar 

  • Krakau, C. E. T.: Frequency analysis of neuronal time series. Kgl. fysiogr. Sällsk. Lund Förh.26, Nr 16 (1956).

  • Küpfmuller, K.: Informationsverarbeitung durch den Menschen. Nachrtech. Z.12, 68–74 (1959).

    Google Scholar 

  • —, Jenik, J.: Über die Nachrichtenverarbeitung in der Nervenzelle. Kybernetik1, 1–6 (1961).

    Google Scholar 

  • Lashley, K. S.: The problem of cerebral organization in vision. In: Visual mechanisms, Biol. Sympos. (ed. by Klüver, H.)7, 301–322 (1942).

  • —: Brain mechanisms and intelligence. New York: Dover 1963. (paperback).

    Google Scholar 

  • Laufer, M.: Dr. Laufer has commented that he feels most lateral geniculate nucleus behavior is similar to that which goes on in the rabbit L. G. N. November, 1965. (See also Laufer, 1966.)

  • —: Periodic activity in the visual system of the cat. Dissertation (Ph. D.), UCLA, Department of Physiology, 1966. Available from University Microfilms, Inc., Ann Arbor, Michigan.

    Google Scholar 

  • Lehmann, D., Fender, D. H.: Component analysis of human averaged evoked potentials: Dichoptic stimuli using different target structure. Electroenceph. clin. Neurophysiol.24, 542–553 (1968).

    Google Scholar 

  • —, Kavanagh, R. N., Fender, D. H.: Field studies of averaged visually evoked EEG potentials in a patient with a split chiasm. Electroenceph. clin. Neurophysiol.26, 193–199 (1969).

    Google Scholar 

  • Leith, E. N., Upatnieks, J.: New techniques in wavefront reconstruction. J. opt. Soc. Amer.51, 1469 (1961).

    Google Scholar 

  • —: Reconstructed wavefronts and communication theory. J. opt. Soc. Amer.52, 1123–1130 (1962).

    Google Scholar 

  • —: Wavefront reconstruction with continuous-tone transparencies. J. opt. Soc. Amer.53, 522 (1963a).

    Google Scholar 

  • —: Wavefront reconstruction with continuous-tone objects. J. opt. Soc. Amer.53, 1377–1381 (1963b).

    Google Scholar 

  • —: Wavefront reconstruction with diffused illumination and three-dimensional objects. J. opt. Soc. Amer.54, 1295–1301 (1964).

    Google Scholar 

  • —: Photography by laser. Sci. Amer.212 (6), 24–35 (1965).

    Google Scholar 

  • Leith, E. N., Upatnieks, J., Kozma, A., Massey, N.: Hologram visual displays. Laser Focus, November 1, p. 15–19 (1965).

  • Levick, W. R.: An interpretation of multimodal interval histograms. Proceedings of the Physiological Society, 27–28 September (1963). J. Physiol. (Lond.)169, 110–111 (1963).

    Google Scholar 

  • Linden, D. A.: A discussion of sampling theorems. Tech. Report No 1551-1, Solid-State Electronics Laboratory, Stanford Electronics Laboratories, Stanford University, Stanford. California. Prepared under Office of Naval Research Contract, NONR 225 (44), NR 375865, November 14, 1958.

    Google Scholar 

  • Lippman, G.: Sur la Théorie de la Photographie des Couleurs Simples et Composées par la Methode Interiérèntielle. J. de Phys.3, 97 (1894).

    Google Scholar 

  • Longuet-Higgins, H. C.: Holographic model of temporal recall. Nature (Lond.)217, January 6 (1968).

  • MacKay, D. M., McCulloch, W. S.: The limiting informational capacity of a neuronal link. Bull. Math. Biophys.14, 127–135 (1952).

    Google Scholar 

  • Magoun, H. W.: The waking brain. Springfield, Illinois: Thomas 1963.

    Google Scholar 

  • McCulloch, W. S., Pitts, W.: A logical calculus of ideas immanent in nervous activity. Bull. Math. Biophys.5, 115–133 (1943).

    Google Scholar 

  • Millner, P., Glickman, S. (eds.): Cognitive processes and the brain. New York: D. van Nostrand Co., Inc. 1965.

    Google Scholar 

  • Moushegian, G., Rupert, A. L., Langford, T. L.: Stimulus coding by medial superior olivary neurons. J. Neurophysiol.30, 1239 (1967).

    Google Scholar 

  • Nassenstein, H.: A bibliography on holography from the article by Prof. Nassenstein, Abbildungsverfahren mit Rekonstruktion des Wellenfeldes (Holographie). Z. angew. Physik22, 37–50 (1966).

    Google Scholar 

  • Neff, W. D.: Neural mechanisms of auditory discrimination. In: Sensory communication, ed. by Walter A. Rosenblith, p. 259–278. New York: John Wiley & Sons, Inc. 1961.

    Google Scholar 

  • —, Diamond, I. T.: The neural basis of auditory discrimination. In: Biological and biochemical bases of behavior, ed. by Harry F. Harlow and Clinton N. Woolsey, p. 101–126. Madison: The University of Wisconsin Press 1958.

    Google Scholar 

  • Neuman, J. von: The general and logical theory of automata. In: Cerebral mechanisms in behavior: The Hixon Symposium (L. A. Jeffress, ed.), p. 1. New York: J. Wiley & Sons 1951.

    Google Scholar 

  • Ogawa, T.: Midbrain reticular influences upon single neurons in L. G. N. Letter in: Science,139, 25 January (1963).

    Google Scholar 

  • O'Neill, E. L.: Introduction to statistical optics. Reading, Massachusetts: Addison-Wesley Publishing Company 1963.

    Google Scholar 

  • Pitts, W., McCulloch, W. S.: How we know universals: The perception of auditory and visual forms. Bull. Math. Biophy.9, 127–147 (1947).

    Google Scholar 

  • Pribram, Karl H.: Some dimensions of remembering: Steps toward a neuropsychological model of memory. Macromolecules and behavior. (John Gaito, ed.) New York: Appleton-Century-Crofts (1966).

    Google Scholar 

  • Pribram, Karl H.: The neural physiology of remembering. Sci. Amer.220, No 1 (1969).

  • Quarton, G. C.: Theodore Melnechuk, and Francis O. Schmitt (eds.). The neuro sciences, p. 707. New York: The Rockefeller University Press 1967.

    Google Scholar 

  • Richards, W. A.: Report given at an international workshop on “Neural Communications: Experiment and Theory” held at Keele University, Staffordshire, England, September, 1967, as reported in Science, under Meetings,159, 19 January (1968).

    Google Scholar 

  • Robieux, J.: Lois Generales de la Liason Entre Radiateures d'Ondes, Application aux Ondes de Surface et à la Propagation. Ann. de Radioelect.14, 57–187 (1959).

    Google Scholar 

  • Robinson, D. N.: Visual discrimination of temporal order. Science156, 1263 (1967).

    Google Scholar 

  • Rogers, G. L.: Gabor diffraction microscopy: The hologram as a generalized zone plate. Nature (Lond.)166, 237 (1950).

    Google Scholar 

  • Schlag, J. D.: Discussion with Prof. Schlag, M. D., of UCLA, November, 1967.

  • Schmitt, O. H.: Biologically structured microfields and stochastic memory models. In: Macromolecular specificity and biological memory (Francis O. Schmitt, ed.). 1962.

  • Shannon, C. E.: A mathematical theory of communication. Bell System Tech. J.27, 379–423, 623–656 (1948).

    Google Scholar 

  • Sperry, R. W., Miner, N.: Pattern perception following insertion of mica plates into visual cortex. J. comp. physiol. psychol.48, 463–469 (1955).

    Google Scholar 

  • Stroke, G. W.: An introduction to coherent optics and holography, 2nd ed. New York: Academic Press 1969.

    Google Scholar 

  • Ten Hoopen, M.: Multi-modal interval distribution. Kybernetik3, 17–24 (1966 a).

    Google Scholar 

  • —: Impulse sequences of thalamic neurons — an attempted theoretical interpretation. Brain Research, Research Reports3, 123–140 (1966b).

    Google Scholar 

  • —, Reuver, H. A.: Interaction between two independent recurrent time series. Information and Control10, 149–158 (1967).

    Google Scholar 

  • Teuber, H.-L.: Neuere Beobachtungen über Sehstrahlung und Sehrinde. In: R. Jung (ed.), The visual system: Neurophysilogy and psychophysics, S. 256–274. Berlin-Heidelberg-New York: Springer 1961.

    Google Scholar 

  • —, Bender, M. B.: Alterations in pattern vision following trauma of occipital lobes in man. J. gen. Psyohol.40, 37–57 (1949).

    Google Scholar 

  • Teuber, H.-L., Batterby, W. S., Bender, M. B.: Visual field defects after penetrating missile wounds of the brain: Harvard University Press 1960.

  • Tou, J.: Modern control theory, p. 97. New York: McGrawHill Book Company 1964.

    Google Scholar 

  • Weiskrantz, L., Cowey, A.: Comparison of the effects of striate cortex and retinal lesions on visual acuity in the monkey. Science155, 104–106 (1967).

    Google Scholar 

  • Westlake, P. R.: Pointed out by Dr. Westlake in conversations with Prof. John L. Barnes of UCLA and Prof. T. H. Bullock (then of UCLA), April and May, 1965a.

  • Westlake, P. R. Correspondence with Frank E. Myers, Editor of Journal of Applied Physics, regarding possibilities of neural holographic process. July and August, 1965b.

  • Westlake, P. R. Talks given at UCLA entitled “Distributive Coding of Information Through Interference Patterns with Applications to the Neural Coding of Sensory Representations,” September, 1966.

  • Westlake, P. R. The neurophysiological property of distributedness and optical holography. Privately published, January, 1967a.

  • Westlake, P. R. Unpublished work, dated July 12, 1967b.

  • Westlake, P. R.: Towards a theory of brain functioning: The possibilities of neural holographic processes. Conference Proceedings of the 20th Annual Conference on Engineering in Medicine and Biology. IEEE, November, (1967c).

  • — Towards a theory of brain functioning: A detailed investigation of the possibilities of neural holographic processes. Ph. D. Dissertation, School of Engineering and Applied Science, University of California, Los Angeles, 1968. Available from University Microfilms, P. O. Box 1346, Ann Arbor, Michigan.

    Google Scholar 

  • Wicke, J. D.: Perceptual and electrophysiological correlates of temporal activity in the visual system of man. Ph. D. Dissertation, Department of Psychology, University of California, Los Angeles, 1968. Available from University Microfilms, Ann Arbor, Michigan.

    Google Scholar 

  • Wiener, O.: II Stehende Lichtwellen und die Schwingungsrichtung polarisierten Lichtes. Ann. d. Physik40, 203 (1890).

    Google Scholar 

  • Wigner, E. P.: Symmetries and reflections. Bloomington, Indiana: Indiana University Press 1967.

    Google Scholar 

  • Young, J. Z.: Effect of removal of various amounts of the vertical lobes on visual discrimination by octopus. Proc. roy. Soc. B149, 463–483 (1958).

    Google Scholar 

  • Young, L. R., Stark, L.: Variable feedback experiments testing a sampled data model for eye tracking movements. IEEE Trans. Human Factors in Electronics, September (1963).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Westlake, P.R. The possibilities of neural holographic processes within the brain. Kybernetik 7, 129–153 (1970). https://doi.org/10.1007/BF00571694

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00571694

Keywords

Navigation