Skip to main content
Log in

Debond coating requirements for brittle matrix composites

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The cause of improved fracture toughness in Y2O3-coated niobium-toughened TiAl relative to either uncoated niobium or Al2O3-coated niobium was examined. Reactively sputtered Y2O3 coatings, 1–2 μm thick, were deposited on to rock salt (NaCl), polished single-crystal (0001) Al2O3, and polished polycrystalline niobium. Sputtered niobium coatings, 1–2 μm thick, were also deposited on to polished single-crystal Y2O3 substrates for comparison. The oxide coating was characterized and consisted of stoichiometric bcc Y2O3 witha 0=1.0602 nm. Indentation tests were performed to correlate the fracture toughness and debond characteristics of as-deposited Y2O3 coatings on Al2O3 and polycrystalline niobium, and niobium coatings on single-crystal Y2O3, to that found in TiAl/Nb and Al2O3/Al2O3 laminates. The calculated fracture toughness of sputtered Y2O3 on sapphire was similar to reported values for bulk Y2O3. However, a wide variation in interfacial fracture toughness was obtained by indentation methods, and is attributed to the microstructure of as-deposited coatings and to weak bonding between as-deposited yttria and the sapphire substrate. These results are related to factors that affect debonding and fracture toughness of brittle matrix composites. Reactive and non-reactive metal/ceramic systems were reviewed in an effort to understand why Y2O3 coatings perform well. It is postulated that yttrium oxide coatings applied to niobium have an atomically sharp interface that has a lower fracture energy compared to Nb/Al2O3, resulting in improved interfacial debonding and composite fracture toughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Evans andD. B. Marshall,Acta Metall. 37 (1989) 2567.

    Article  CAS  Google Scholar 

  2. H. C. Cao, E. Bischoff, O. Sbaizero, M. Rühle, A. G. Evans, D. B. Marshall andJ. J. Brennan,J. Am. Ceram. Soc. 73 (1990) 1691.

    Article  CAS  Google Scholar 

  3. V. Gupta, A. S. Argon andJ. A. Cornie,J. Mater. Sci. 24 (1989) 2031.

    Article  CAS  Google Scholar 

  4. M. Basche, R. Fanti andF. Galasso,Fiber Sci. Technol. 1 (1968) 19.

    Article  CAS  Google Scholar 

  5. F. Wawner, A. Y. Teng andS. R. Nutt,SAMPE Q. 14 (1983) 39.

    CAS  Google Scholar 

  6. H. Déve, A. G. Evans, G. R. Odette, R. Mehrabian, M. L. Emiliani andR. J. Hecht,Acta Metall. Mater. 38 (1990) 1491.

    Article  Google Scholar 

  7. J. Davis, H. C. Cao, G. Bao andA. G. Evans,ibid. 39 (1991) 1019.

    Article  CAS  Google Scholar 

  8. A. G. Evans, A. Bartlett, J. B. Davis, B. D. Flinn, M. Turner andI. E. Reimanis,Scripta Metall. Mater. 25 (1991) 1003.

    Article  CAS  Google Scholar 

  9. W. Mader andM. Rühle,Acta Metall. 37 (1989) 853.

    Article  CAS  Google Scholar 

  10. L. G. Rosenfeld, J. E. Ritter andT. J. Lardner, “Interfaces in Composites”, Materials Research Society Symposium Proceedings, Vol. 170 (Materials Research Society, Pittsburgh, PA, 1990) p. 11–16.

    Google Scholar 

  11. T. B. Massalski, (Ed.), “Binary Alloy Phase Diagrams”, Vol. 2 (American Society for Metals, Metals Park, OH, 1986) p. 1799.

    Google Scholar 

  12. M. Abouelleil, L. Conopask, W. Nighan, W. Roman andD. Price,Ceram. Trans. 15 (1990) 457.

    CAS  Google Scholar 

  13. C. B. Ponton andR. D. Rawlings,Mater. Sci. Technol. 5 (1989) 961.

    Article  CAS  Google Scholar 

  14. Idem, ibid. 5 (1989) 865.

    Article  Google Scholar 

  15. S. Chaing, D. Marshall andA. Evans, in “Surfaces and Interface of Ceramics and Ceramic/Metal Systems”, edited by J. Pask and A. Evans, (Plenum Press, New York, 1981) pp. 603–17.

    Chapter  Google Scholar 

  16. R. W. Hertzberg, “Deformation and Fracture Mechanics of Engineering Materials”, (Wiley, New York, 1976) pp. 255–96.

    Google Scholar 

  17. B. A. Movchan andA. V. Demshichin,Phys. Met. Metall. 28 (1969) 83.

    Google Scholar 

  18. J. A. Thornton,Ann. Rev. Mater. Sci. 7 (1977) 239.

    Article  CAS  Google Scholar 

  19. P. Sargent, in “Microhardness Techniques in Materials Science and Engineering”, edited by P. Blau and R. Lawn, ASTM STP 889 (American Society for Testing and Materials, Philadelphia, PA, 1986) pp. 160–74.

    Google Scholar 

  20. G. Fantozzi, G. Orange, K. Liang andE. Gillet,J. Am. Ceram. Soc. 72 (1989) 1562.

    Article  CAS  Google Scholar 

  21. P. J. Burnett andD. S. Rickerby,Thin Solid Films 148 (1987) 51.

    Article  CAS  Google Scholar 

  22. R. Cook, M. Pascucci, andH. Rhodes,J. Am. Ceram. Soc. 73 (1990) 1873.

    Article  CAS  Google Scholar 

  23. J. Haggerty, “Production of Fibers by a Floating Zone Fiber Drawing Technique”, Final Report, NASA Report CR-120984, May 1972, p. 52.

  24. H. Baker (ed.), “Metals Handbook”, Vol. 2, 9th Edn (ASM International, Metals Park, OH, 1979) p. 779.

    Google Scholar 

  25. Idem, “Metals Handbook”, Vol. 2, 10th Edn (ASM International, Metals Park, OH, 1990) pp. 567–68.

    Google Scholar 

  26. B. Lawn, A. Evans andD. Marshall,J. Am. Ceram. Soc. 63 (1980) 574.

    Article  CAS  Google Scholar 

  27. P. M. Fabis,J. Vac. Sci. Technol. A5 (1987) 75.

    Article  Google Scholar 

  28. M. Emiliani, M. Richman andR. Brown,J. Mater. Sci. 25 (1990) 137.

    Article  CAS  Google Scholar 

  29. Idem, ibid. 25 (1990) 144.

    Article  CAS  Google Scholar 

  30. R. Birringer,Mater. Sci. Eng. A117 (1989) 33.

    Article  CAS  Google Scholar 

  31. D. J. Srolovitz,J. Vac. Sci. Technol. A 6 (1986) 2925.

    Article  Google Scholar 

  32. M. Kuwabara, J. C. H. Spence andM. Rühle,J. Mater. Res. 4 (1989) 972.

    Article  CAS  Google Scholar 

  33. F. S. Ohuchi,J. Mater. Sci. Lett. 8 (1989) 1427.

    Article  CAS  Google Scholar 

  34. J. Kennedy andG. Geschwind, in “Titanium Science and Technology”, Vol. 4, edited by R. I. Jaffee and H. M. Burte (Plenum Press, New York, 1973) p. 2299.

    Google Scholar 

  35. J. H. Selverian, M. Bortz, F. S. Ohuchi andM. R. Notis, in “Electronic Packaging Materials Science III”, edited by R. Jaccodine, K. A. Jackson and R. C. Sundahl, Materials Research Society Symposium Proceedings, Vol. 108 (Materials Research Society, Pittsburgh, PA, 1988) p. 107.

    Google Scholar 

  36. M. Bortz andF. S. Ohuchi,J. Appl. Phys. 64 (1988) 2054.

    Article  CAS  Google Scholar 

  37. S. Morozumi, M. Kikuchi andT. Nishino,J. Mater. Sci. 16 (1981) 2137.

    Article  CAS  Google Scholar 

  38. Y. Ishida, H. Ichinose, J. Wang andT. Suga, in “Proceedings of the 46th Annual Meeting of EMSA”, edited by G. W. Bailey (San Francisco Press Inc., San Francisco, CA, 1988) p. 728.

    Google Scholar 

  39. R. Naslain, O. Dugne, A. Guette, J. Sevely, C. R. Brosse, J -P. Rocher andJ. Cotteret,J. Am. Ceram. Soc. 74 (1991) 2482.

    Article  CAS  Google Scholar 

  40. H. E. Dève andM. J. Maloney,Acta Metall. Mater. 39 (1991) 2275.

    Article  Google Scholar 

  41. R. C. Weast (Ed.), “CRC Handbook of Chemistry and Physics”, 68th Edn (CRC, Boca Raton, FL, 1987) p. D-51 and D-92.

    Google Scholar 

  42. J. A. Thornton, in “Deposition Technologies for Thin Films and Coatings”, edited by R. F. Bunshah (Noyes, Park Ridge, NJ, 1982) pp. 170–243.

    Google Scholar 

  43. M. F. Ashby andD. R. H. Jones, “Engineering Materials” (Pergamon Press, New York, 1980) Chs 3 and 4.

    Google Scholar 

  44. M. L. Scott, in “Laser-Induced Damage in Optical Materials”, NBS Special Publication 688, November 1985.

  45. R. W. Hoffman, in “Thin Films: Stresses and Mechanical Properties”, Materials Research Society Symposium Proceedings, Vol. 130, edited by J. D. Bravman, W. D. Nix, D. M. Barnett and D. A. Smith (Materials Research Society, Pittsburgh, PA, 1989) p. 87–92.

    Google Scholar 

  46. T. P. Weihs, S. Hong, J. C. Bravman andW. D. Nix,ibid.in “ p. 295–306.

    Google Scholar 

  47. J. D. Horner, in “Testing of Metallic and Inorganic Coatings”, edited by W. B. Harding and G. A. Bari, ASTM STP 947 (American Society for Testing and Materials, Philadelphia, PA, 1987) p. 96.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Emiliaini, M.L. Debond coating requirements for brittle matrix composites. J Mater Sci 28, 5280–5296 (1993). https://doi.org/10.1007/BF00570079

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00570079

Keywords

Navigation