Skip to main content
Log in

Plasma polymerization of ethane. II. Theoretical analysis of effluent gas composition and polymer deposition rates

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

A theoretical model has been developed to describe the deposition of polymer occurring in a capacitatively coupled, low-pressure, RF discharge sustained in ethane. The reaction mechanism chosen for this model assumes that polymer formation is controlled by the formation of free radicals in the plasma and the subsequent reaction of these species at the surface of the electrodes used to sustain the plasma. Convective and diffusive transport is taken to occur in the direction parallel to the electrodes. Diffusive transport perpendicular to the electrodes is considered to be rapid, and hence the gradients in this direction are taken to be negligible. Both the composition of the gas leaving the plasma reactor and the axial profile of polymer deposition rate within the reactor, observed experimentally, are predicted accurately by the model. Results obtained from the model have also been used to estimate the kinetic chain length and degree of unsaturation in the polymer. Both predictions are found to be in reasonable agreement with experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. M. Kolotyrkin, A. B. Gilman, and A. K. Tsqpuk,Russ. Chem. Rev. 36, 579 (1967).

    Google Scholar 

  2. A. M. Mearns,Thin Solid Films 3, 201 (1969).

    Google Scholar 

  3. M. Millard, inTechniques and Applications of Plasma Chemistry, J. R. Hollahan and A. T. Bell, eds., Wiley, New York (1974).

    Google Scholar 

  4. M. Shen, ed.,Plasma Chemistry of Polymers, Marcel Dekker, New York (1976).

    Google Scholar 

  5. M. R. Havens, M. E. Biolsi, and K. G. Mayhan,J. Vac. Sci. Technol. 13, 575 (1976).

    Google Scholar 

  6. H. Yasuda, inThin Film Processes, J. L. Vossen, and W. Kern, eds., Academic Press, New York (1978).

    Google Scholar 

  7. M. Shen and A. T. Bell, inPlasma Polymerization, ACS Symposium Series 108, M. Shen and A. T. Bell, eds., American Chemical Society, Washington, D.C. (1979).

    Google Scholar 

  8. A. T. Bell, inPlasma Chemistry III, Topics in Current Chemistry, Vol. 94, S. Vepřek and M. Venugopalan, eds., Springer-Verlag, Berlin, New York (1980).

    Google Scholar 

  9. R. J. Jensen, A. T. Bell, and D. S. Soong,Plasma Chem. Plasma Process.3, 139 (1983).

    Google Scholar 

  10. J. G. Calvert and J. N. Pitts, Jr.,Photochemistry, Wiley, New York (1966).

    Google Scholar 

  11. S. G. Lias, G. H. Collin, R. E. Rebbert, and P. Ausloos,J. Chem. Phys. 52, 1841 (1970).

    Google Scholar 

  12. H. Akimoto, K. Obi, and I. Tanaka,Bull. Chem. Soc. Jpn. 46, 2267 (1973).

    Google Scholar 

  13. L. W. Sieck, inFundamental Processes in Radiation Chemistry, P. Ausloos, ed., Wiley, New York (1968).

    Google Scholar 

  14. P. Borrell A. Cervenka and J. W. Turner,J. Chem. Soc. (B), 2294 (1971).

    Google Scholar 

  15. H. Hara, K. Kodama, and I. Tanaka,Bull. Chem. Soc. Jpn. 48, 711 (1975).

    Google Scholar 

  16. E. L. Cochran, F. J. Adrian, and V. A. Bowers,J. Chem. Phys. 40, 213 (1964).

    Google Scholar 

  17. S. Takita, Y. Mori, and I. Tanaka,J. Phys. Chem. 73, 2929 (1969).

    Google Scholar 

  18. L. J. Stief, V. J. DeCaro, and R. J. Matloni,J. Chem. Phys. 42, 3113 (1965).

    Google Scholar 

  19. M. Tsukada and S. Shida,Bull. Chem. Soc. Jpn. 43, 3621 (1970).

    Google Scholar 

  20. H. Kobayashi, A. T. Bell, and M. Shen,Macromolecules 7, 277 (1974).

    Google Scholar 

  21. H. G. PooleProc. R. Soc. London (A),163, 404, 415, 424 (1937).

    Google Scholar 

  22. Desaintfuscien,Rev. Phys. Appl. 2, 235 (1967).

    Google Scholar 

  23. T. M. Shaw, Studies of Microwave Gas Discharges: Production of Free Radicals in a Microwave Discharge, General Electric Technical Information Report No. TISR58ELM 115, General Electric Microwave Laboratory, Palo Alto, California (1958).

    Google Scholar 

  24. B. H. Mayhan and R. Mandal,J. Chem. Phys. 37, 207 (1962).

    Google Scholar 

  25. P. Ausloos, R. Gorden, Jr., and S. G. Lias,J. Chem. Phys. 40, 1854 (1964).

    Google Scholar 

  26. H. Okabe and R. J. McNesby,J. Chem. Phys. 37, 1340 (1962).

    Google Scholar 

  27. M. C. Sauer, Jr., and L. M. Dorfman,J. Chem. Phys. 39, 2549 (1963).

    Google Scholar 

  28. H. Okabe and D. A. Becker,J. Chem. Phys. 39, 2549 (1963).

    Google Scholar 

  29. V. N. Kondratiev, Rate Constants of Gas Phase Reactions, Office of Standard Reference Data, National Bureau of Standards, Washington, D.C. (1972).

    Google Scholar 

  30. A. A. Westenberg and N. DeHaas,J. Chem. Phys. 50, 707 (1969).

    Google Scholar 

  31. J. R. Barker, D. G. Keil, J. V. Michael, and D. T. Osborne,J. Chem. Phys. 52, 2079 (1970).

    Google Scholar 

  32. J. W. Michael and R. E. Seston, Jr.,J. Chem. Phys. 45, 3632 (1966).

    Google Scholar 

  33. T. Ibuki and Y. Takezaki,Bull. Chem. Soc. Jpn. 48, 769 (1975).

    Google Scholar 

  34. J. A. Cowfer, D. G. Keil, J. V. Michael, and C. Yeh,J. Phys. Chem. 75, 1584 (1971).

    Google Scholar 

  35. G. G. Volpi and F. Zocchi,J. Chem. Phys. 44, 4010 (1966).

    Google Scholar 

  36. J. V. Michael and H. Niki,J. Chem. Phys. 44, 4969 (1967).

    Google Scholar 

  37. V. S. Rabinovitch and D. S. Setser,Adv. Photochem. 3, 1 (1964).

    Google Scholar 

  38. J. O. Terry and J. H. Futrell,Can. J. Chem. 45, 2327 (1968).

    Google Scholar 

  39. S. Morita, M. Shen, and A. T. Bell,J. Polym. Sci.: Polym. Chem. Ed. 17, 2775 (1979).

    Google Scholar 

  40. P. Camilleri, R. M. Marshall, and J. H. Purnell,J. Chem. Soc. Faraday Trans. 1 70, 1434 (1970).

    Google Scholar 

  41. M. J. Kurylo, N. C. Peterson, and W. Brau,J. Chem. Phys. 53, 2776 (1970).

    Google Scholar 

  42. G. Pratt, and I. Veltman,J. Chem. Soc. Faraday Trans. 1 70, 1840 (1974).

    Google Scholar 

  43. G. Pratt and I. Veltman,J. Chem. Soc. Faraday Trans. 1 72, 1733 (1976).

    Google Scholar 

  44. L. Teng, and W. E. Jones,J. Chem. Soc. Faraday Trans. 1 68, 1267 (1972).

    Google Scholar 

  45. M. P. Halstead, D. A. Leathard, R. M. Marshall, and H. J. Purnell,Proc. R. Soc. London (A)316, 575 (1970).

    Google Scholar 

  46. G. L. Pratt,Gas Kinetics, Wiley, London (1969).

    Google Scholar 

  47. J. A. Kerr and A. F. Trotman-Dickenson, inProgress in Reaction Kinetics, Vol. 1, G. Porter, ed., Wiley, New York (1961).

    Google Scholar 

  48. J. Nicholas,Chemical Kinetics: A Modern Survey of Gas Reactions, Halstead Press, New York (1976).

    Google Scholar 

  49. L. Mandelcorn and E. W. R. Steacie,Can. J. Chem. 32, 474 (1954).

    Google Scholar 

  50. L. C. Landers and D. H. Volman,J. Am. Chem. Soc. 79, 2996 (1957).

    Google Scholar 

  51. J. A. Kerr and A. F. Trotman-Dickenson,J. Chem. Soc. (London), 1602, 1611 (1960).

    Google Scholar 

  52. J. A. Kerr and A. F. Trotman-Dickenson,Trans. Faraday Soc. 55, 572 (1959).

    Google Scholar 

  53. R. N. Birrell, and A. F. Trotman-Dickenson,J. Chem. Soc. (London), 4218 (1960).

  54. J. A. Garcia Dominguez, and A. F. Trotman-Dickenson,J. Chem. Soc. (London), 940 (1962).

  55. L. W. Watkins, and L. A. O'Deen,J. Phys. Chem. 65, 2665 (1971).

    Google Scholar 

  56. B. A. Thrush, inProgress in Reaction Kinetics, Vol. 3, G. Porter, ed., Pergamon, Oxford (1965).

    Google Scholar 

  57. K. Schofield,Planet. Space Sci. 15, 643 (1967).

    Google Scholar 

  58. S. W. Benson and G. R. Haugen,J. Phys. Chem. 71, 4404 (1967).

    Google Scholar 

  59. F. K. Truby,Int. J. Chem. Kinet. 5, 721 (1973).

    Google Scholar 

  60. O. Levenspiel and K. B. Bischoff, inAdvances in Chemical Engineering, Vol. 4, T. B. Drew, W. Hoopes, Jr., and T. Vermeulen, eds., Academic Press, New York (1963).

    Google Scholar 

  61. R. ArisProc. R. Soc. London (A)235, 67 (1956).

    Google Scholar 

  62. A. Bournia, J. Coull, and G., Houghton,Proc. R. Soc. London (A)261, 277 (1961).

    Google Scholar 

  63. R. B. Bird, W. E. Stewart, and E. N. Lightfoot,Transport Phenomena Wiley, New York (1960).

    Google Scholar 

  64. J. O. Hirschfelder, C. F. Curtis, and R. B. Bird,Molecular Theory of Gases and Liquids, Wiley, New York (1964).

    Google Scholar 

  65. J. Newman,Ind. Eng. Chem. Fundam. 7, 314 (1968).

    Google Scholar 

  66. W. Braun, A. M. Bass, and M. J. Pilling,J. Chem. Phys. 52, 5131 (1970).

    Google Scholar 

  67. A. H. Laufer, and A. M. Bass,J. Phys. Chem. 79, 1635 (1975).

    Google Scholar 

  68. M. J. Pilling, and J. A. Robertson,Chem. Phys. Lett. 33, 336 (1975).

    Google Scholar 

  69. A. T. Bell, inTechniques and Applications of Plasma Chemistry, J. R. Hollahan and A. T. Bell, eds., Wiley, New York (1974).

    Google Scholar 

  70. J. M. Tibbitt, R. Jensen, A. T. Bell, and M. Shen,Macromolecules 10, 647 (1977).

    Google Scholar 

  71. B. J. Wood and H. Wise,J. Phys. Chem. 65, 1049 (1962).

    Google Scholar 

  72. J. J. Ahumada, and J. V. Michael,J. Phys. Chem. 78, 465 (1974).

    Google Scholar 

  73. A. Mandl, and A. Salop,J. Phys. Chem. 67, 1163 (1963).

    Google Scholar 

  74. A. B. King and H. Wise,J. Phys. Chem. 67, 1163 (1963).

    Google Scholar 

  75. K. H. Laidler, inCatalysis, P. H. Emmett, ed., Reinhold, New York (1954).

    Google Scholar 

  76. T. R. Marrero and E. A. Mason,J. Phys. Chem. Ref. Data 1, 3 (1972).

    Google Scholar 

  77. J. M. Tibbitt, A. T. Bell, and M. Shen,J. Macromol. Sci.-Chem. A11, 139 (1977).

    Google Scholar 

  78. A. Dilks, S. Kaplan, and A. Van Laeken,J. Polym. Sci.: Polym. Chem. Ed. 19, 2987 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jensen, R.J., Bell, A.T. & Soong, D.S. Plasma polymerization of ethane. II. Theoretical analysis of effluent gas composition and polymer deposition rates. Plasma Chem Plasma Process 3, 163–192 (1983). https://doi.org/10.1007/BF00566019

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00566019

Key words

Navigation