Skip to main content
Log in

Reactions of hydrogen peroxide vapor dissociated in a microwave plasma

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Analysis of the plasma emission from a low-pressure microwave cavity discharge through flowing hydrogen peroxide vapor showed that both H and OH were produced in proportions which varied with the applied power. When the dissociated vapor was condensed at 195 K only water was obtained; at 77 K, H2O2 and H2O4 were also obtained. Their formation could not be increased by increasing the H atom or OH radical concentration in the plasma. When the reaction time of the dissociated vapor between the plasma exit and the cold surface was increased, the rate of H2O2 formation increased mostly at the expense of water formation. It appears that, as in the case of the reaction of H with O2, the rate of H2O2 formation is dependent on the concentration of O2 produced in the spatial afterglow by the gas-phase reactions of the hydroxyl radicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Venugopalan and R. A. Jones,Chem. Rev. 66, 133 (1966).

    Google Scholar 

  2. M. Venugopalan and R. A. Jones,Chemistry of Dissociated Water Vapor and Related Systems (Wiley-Interscience, New York, 1968), Chapter 3.

    Google Scholar 

  3. H. C. Urey, L. H. Dawsey, and F. O. Rice,J. Am. Chem. Soc. 51, 1371 (1929).

    Google Scholar 

  4. A. A. Frost and O. Oldenberg,J. Chem. Phys. 4, 781 (1936).

    Google Scholar 

  5. S. N. Foner and R. L. Hudson,J. Chem. Phys. 23, 1964 (1955);36, 2681 (1962).

    Google Scholar 

  6. R. L. Allen and F. S. Stone,Nature (London) 180, 752 (1952).

    Google Scholar 

  7. J. S. Batzold, C. Luner, and C. A. Winkler,Can. J. Chem. 31, 262 (1953).

    Google Scholar 

  8. A. I. Gorbanev, A. B. Tsentsiper, I. M. Ziteneva, and M. S. Danilova,Izv. Sibirsk. Otdel. Akad. Nauk SSSR, 43 (1958).

  9. A. A. Westenberg and N. de Haas,J. Chem. Phys. 58, 4066 (1973).

    Google Scholar 

  10. R. A. Jones, W. Chan, and M. Venugopalan,J. Chem. Phys. 51, 1273 (1969).

    Google Scholar 

  11. N. Hata and P. A. Giguiere,Can. J. Chem. 44, 869 (1966).

    Google Scholar 

  12. R. A. Jones and M. Venugopalan,Can. J. Chem. 45, 2452 (1967).

    Google Scholar 

  13. M. Venugopalan and K. Choi,Z. Phys. Chem. 74, 32 (1971).

    Google Scholar 

  14. R. A. Jones, W. Chan, and M. Venugopalan,J. Phys. Chem. 73, 3693 (1969).

    Google Scholar 

  15. K. F. Bonhoeffer and T. G. Pearson,Z. Phys. Chem. Abt. B 14, 1 (1931).

    Google Scholar 

  16. T. M. Sanders, Jr., A. L. Schawlow, G. C. Dousmanis, and C. H. Townes,J. Chem. Phys. 22, 245 (1954).

    Google Scholar 

  17. S. N. Foner and R. L. Hudson,Adv. Chem. Ser. 36, 34 (1962).

    Google Scholar 

  18. C. J. Hochanadel, T. J. Sworski, and P. J. Ogren,J. Phys. Chem. 84, 3274 (1980).

    Google Scholar 

  19. R. F. Hampson, Jr., and D. Garvin,Nat. Bur. Stand. Spec. Publ. (U.S.) No. 513 (1978).

  20. F. Kaufman,Ann. Geophys. 20, 106 (1964);Can. J. Chem. 47, 1917 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venugopalan, M., Shih, AL. Reactions of hydrogen peroxide vapor dissociated in a microwave plasma. Plasma Chem Plasma Process 1, 191–200 (1981). https://doi.org/10.1007/BF00564580

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00564580

Key words

Navigation