Skip to main content
Log in

Synergetics of macrostructure evolution of a new phase

  • Solid State Physics
  • Published:
Russian Physics Journal Aims and scope

Abstract

The status of the theory of nucleation of a new phase is reviewed. Special attention is devoted to the relation between the micro- and macroscopic levels. A systematic exposition is given of the methods developed by Cahn, Cook, Langer, and Mazenko for describing the spatiotemporal correlation of the order-parameter field for the continuous (spinodal) mechanism of formation of a new phase. The time dependence of the characteristic size L(t) is found for the cases of nonconserved and conserved order parameters as well as for the coalescence process. It is shown that in the case of the intermittent (binodal) formation mechanism a critical nucleus of a new phase can be represented as the soliton solution of the field equation. It is found that the appearance of sharp interphase boundaries results in a transition from spinodal to heterophase kinetics, represented as a loss of ergodicity. The nonergodicity parameter is determined as a function of the interatomic interaction and anharmonicity within the Ginzburg-Landau scheme. Coalescence in the presence of intense external noise is investigated for systems with a conserved order parameter. A stochastic equation is derived for the size distribution function of precipitates of the new phase and the effect of intensity fluctuations and supersaturation of the limiting component on the solution of this equation is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. L. D. Landau and E. M. Lifshitz, Statistical Physics [in Russian], Part 1, Nauka, Moscow (1976).

    Google Scholar 

  2. A. A. Katsnel'son and A. I. Olemskoi, Macroscopic Theory of Inhomogeneous Structures [in Russian], Moscow State University, Moscow (1987).

    Google Scholar 

  3. H. E. Cook, Acta Met.,23, 1027 (1975).

    Google Scholar 

  4. N. Horsthemke and R. Lefever, Noise-Induced Transitions, Springer-Verlag, New York (1984).

    Google Scholar 

  5. J. W. Cahn and J. E. Hilliard, J. Chem. Phys.,28, 258 (1958);31, 668 (1959); J. W. Cahn, J. Chem. Phys.,42, 93 (1965); S. M. Allen and J. W. Cahn, Acta Met.,27, 1085 (1979).

    Google Scholar 

  6. H. E. Cook, Acta Met.,18, 297 (1970).

    Google Scholar 

  7. J. S. Langer, Ann. Phys.,65, 53 (1971); J. S. Langer, M. Barron, and H. D. Miller, Phys. Rev. A,11, 1417 (1975).

    Google Scholar 

  8. D. J. Amit and M. Zannetti, J. Stat. Phys.,7, 31 (1973).

    Google Scholar 

  9. G. F. Mazenko, O. T. Valls, and M. Zannetti, Phys. Rev. B,38, 520 (1988).

    Google Scholar 

  10. E. M. Lifshitz, Zh. Éksp. Teor. Fiz.,15, 939 (1962).

    Google Scholar 

  11. E. M. Lifshitz and V. V. Slezov, Zh. Éksp. Teor. Fiz.,35, 479 (1958).

    Google Scholar 

  12. G. F. Mazenko, Phys. Rev. Lett.,63, 1605 (1989); Phys. Rev. B,42, 4487 (1990);43, 5747 (1991).

    Google Scholar 

  13. G. Porod, in: Small Angle X-Ray Scattering, O. Glatter and L. Kratky (eds.), Academic Press, New York (1983).

    Google Scholar 

  14. P. G. Cheremskoi, V. V. Slezov, and V. I. Betekhtin, Pores in Solids [in Russian], Énergoatomizdat, Moscow (1990).

    Google Scholar 

  15. A. Bray, Phys. Rev. Lett.,62, 2841 (1989).

    Google Scholar 

  16. F. Falk, Z. Phys. B,54, 159 (1984).

    Google Scholar 

  17. A. I. Olemskoi, E. A. Toropov, and I. A. Sklyar, Zh. Éksp. Teor. Fiz.,99, 987 (1991).

    Google Scholar 

  18. Yu. V. Mikhailova and L. A. Maksimov, Zh. Éksp. Teor. Fiz.,59, 1368 (1970).

    Google Scholar 

  19. Z. Y. Chen, Phys. Rev. B,40, 4656 (1989).

    Google Scholar 

  20. V. S. Mitlin, Zh. Éksp. Teor. Fiz.,95, 1826 (1989).

    Google Scholar 

  21. É. P. Fel'dman and L. I. Stefanovich, Zh. Éksp. Teor. Fiz.,96, 1513 (1989).

    Google Scholar 

  22. R. G. Palmer, Adv. Phys.,31, 669 (1982).

    Google Scholar 

  23. M. V. Feigel'man and F. M. Tsvelik, Zh. Éksp. Teor. Fiz.,83, 1430 (1982).

    Google Scholar 

  24. V. Getze, Liquid-Glass Phase Transitions, Naula, Moscow (1992).

    Google Scholar 

  25. D. Forster, Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions, W. A. Benjamin, Reading, MA (1975).

    Google Scholar 

  26. R. Zwanzig, J. Chem. Phys.,33, 1338 (1960); Phys. Rev.,124, 983 (1960); H. Mori, Progr. Theor. Phys.,33, 423 (1965).

    Google Scholar 

  27. Yu. A. Tserkovnikov, Teor. Mat. Fiz.,49, 219 (1981);50, 261 (1982).

    Google Scholar 

  28. V. L. Aksenov, M. Bobeth, N. M. Plakida, and J. J. Schreiber, Phys. C,20, 375 (1987).

    Google Scholar 

  29. K. Binder and A. P. Young, Rev. Mod. Phys.,58, 801 (1986).

    Google Scholar 

  30. G. Toulouse, Commun. Phys.,2, 115 (1977).

    Google Scholar 

  31. Ya. E. Geguzin and M. A. Krivoglaz, Motion of Macroscopic Inclusions in Solids [in Russian], Metallurgiya, Moscow (1971).

    Google Scholar 

  32. Ya. E. Geguzin and Yu. S. Kaganovskii, Ukr. Fiz. Zh.,21, 254 (1976).

    Google Scholar 

  33. V. V. Slezov and V. B. Shikin, Fiz. Tverd. Tela,6, 7 (1964).

    Google Scholar 

  34. A. I. Olemskoi and A. V. Paripskii, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 11, 122 (1978); No. 12, 73 (1978).

  35. L. A. Maksimov and A. I. Ryazanov, Zh. Éksp. Teor. Fiz.,79, 2311 (1980).

    Google Scholar 

  36. V. V. Slezov, Fiz. Tverd. Tela,31, 20 (1989).

    Google Scholar 

  37. A. V. Osipov, Metallofizika,12, 44–45 (1990).

    Google Scholar 

  38. S. Abis, R. Caciuffo, F. Carsughi, R. Coppola, et al., Phys. Rev. B,42, 2275–2281 (1990).

    Google Scholar 

  39. V. S. Volkov, Zh. Éksp. Teor. Fiz.,98, 168 (1990).

    Google Scholar 

  40. L. D. Landau and E. M. Lifshitz, Fluid Mechanics [in Russian], Nauka, Moscow (1988).

    Google Scholar 

Download references

Authors

Additional information

Sumskii Physicotechnological Institute of the Scientific and Industrial Enterprise RÉTO. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 1, pp. 90–122, January, 1993.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olemskoi, A.I., Koplyk, I.V., Sklyar, I.A. et al. Synergetics of macrostructure evolution of a new phase. Russ Phys J 36, 74–101 (1993). https://doi.org/10.1007/BF00559258

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00559258

Keywords

Navigation