Skip to main content
Log in

Creep behaviour of Cu-30% Zn at intermediate temaperatures

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The creep properties of single-phase Cu-30% Zn alpha brass were investigated in the intermediate temperature range 573–823 K (0.48–0.70T m, whereT m is the absolute melting point). Inverse, linear, and sigmoidal primary creep transients were usually observed above 573 K under stresses resulting in minimum creep rates between 10−7 and 2×10−4s−1, while normal primary creep occurred under all other conditions. The creep stress exponent decreased from about 5.4 at 573 K to about 4.1 above 623 K, and the activation energy for creep varied between 170 and 180 kJ mol−1. A detailed analysis of the data, as well as a review of the literature, suggests that no clearly defined class M to class A to class M transition exists in this alloy, although the characteristics of both class A and class M behaviour are observed under nominally similar stresses and temperatures. It is concluded that Cu-30% Zn does not conform to the normally accepted characterization of class A or class M solid solution alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Yavari, F. A. Mohamed andT. G. Langdon,Acta Metall. 29 (1981) 1495.

    Article  CAS  Google Scholar 

  2. T. G. Langdon, in “Strength of Metals and Alloys (ICSMA 6)”, edited by R. C. Gifkins (Pergamon Press, Oxford, 1983) p. 1105.

    Google Scholar 

  3. H. Oikawa andT. G. Langdon, in “Creep Behaviour of Crystalline Solids”, Vol. 3, “Progress in Creep and Fracture”, edited by B. Wilshire and R. W. Evans, (Pineridge Press, Swansea, 1985) p. 33.

    Google Scholar 

  4. H. Oikawa, in “Creep and Fracture of Engineering Materials and Structures”, edited by B. Wilshire and R. W. Evans (Pineridge Press, Swansea, 1987) p. 99.

    Google Scholar 

  5. W. J. Evans andB. Wilshire,Metall. Trans. 1 (1970) 2133.

    Article  CAS  Google Scholar 

  6. Idem, Scripta Metall. 8 (1974) 497.

    Article  CAS  Google Scholar 

  7. T. Hasegawa, Y. Ikeuchi andS. Karashima,Met. Sci. J. 6 (1972) 78.

    Article  CAS  Google Scholar 

  8. H. Oikawa, D. Mizukoshi andS. Karashima,Metall. Trans. A9 (1978) 1281.

    Article  Google Scholar 

  9. H. Oikawa andS. Nanba,Trans. Iron Steel Inst. Jpn 27 (1987) 402.

    Article  CAS  Google Scholar 

  10. S. Nanba andH. Oikawa,Mater. Sci. Engng 101 (1988) 31.

    Article  CAS  Google Scholar 

  11. P. Feltham andG. J. Copley,Phil. Mag. 5 (1960) 649.

    Article  CAS  Google Scholar 

  12. R. M. Bonesteel andO. D. Sherby,Acta Metall. 14 (1966) 385.

    Article  CAS  Google Scholar 

  13. J. Hedworth andG. Pollard,Metal Sci. J. 5 (1971) 41.

    Article  CAS  Google Scholar 

  14. T. Hostinský andJ. Cadek,Phil. Mag. 31 (1975) 1177.

    Article  Google Scholar 

  15. G. Nelmes andB. Wilshire,Scripta Metall. 10 (1976) 697.

    Article  CAS  Google Scholar 

  16. B. Hidalgo-Prada andA. K. Mukherjee, unpublished research (1983).

  17. O. D. Sherby andP. M. Burke,Prog. Mater. Sci. 13 (1967) 325.

    Google Scholar 

  18. L. E. Svensson andG. L. Dunlop,Metal Sci. 16 (1982) 57.

    Article  Google Scholar 

  19. H. Oikawa,Phil. Mag. 37 (1978) 707.

    Article  CAS  Google Scholar 

  20. H. Oikawa andK. Sugawara,Scripta Metall. 12 (1978) 85.

    Article  CAS  Google Scholar 

  21. T. G. Langdon andP. Yavari, in “Creep and Fracture of Engineering Materials and Structures”, edited by B. Wilshire and D. R. J. Owen (Pineridge Press, Swansea, 1981) p. 71.

    Google Scholar 

  22. S. V. Raj andT. G. Langdon,Acta Metall. 37 (1989) 843.

    Article  CAS  Google Scholar 

  23. S. V. Raj,J. Mater. Sci. 24 (1989) 3196.

    Article  CAS  Google Scholar 

  24. M. Pahutová, J. Cadek andP. Rys,Scripta Metall. 11 (1977) 1061.

    Article  Google Scholar 

  25. S. V. Raj,ibid. 20 (1986) 1751.

    Article  CAS  Google Scholar 

  26. Idem, J. Mater. Sci. Lett. 7 (1988) 1342.

    Article  CAS  Google Scholar 

  27. C. R. Barrett, J. L. Lytton andO. D. Sherby,Trans. AIME 239 (1967) 170.

    CAS  Google Scholar 

  28. H. Oikawa andA. Yasuda,Metal Sci. 13 (1979) 551.

    Article  CAS  Google Scholar 

  29. H. Oikawa, M. Saeki andS. Karashima,Trans, Jpn Inst. Metals 21 (1980) 301.

    Article  Google Scholar 

  30. R. L. Coble,J. Appl. Phys. 34 (1963) 1679.

    Article  Google Scholar 

  31. T. G. Langdon andF. A. Mohamed,Mater. Sci. Engng 32 (1978) 103.

    Article  Google Scholar 

  32. F. R. N. Nabarro, in “Report of a Conference on Strength of Solids” (The Phyical Society, London, 1948) p. 75.

    Google Scholar 

  33. C. Herring,J. Appl. Phys. 21 (1950) 437.

    Article  Google Scholar 

  34. S. V. Raj,J. Mater. Sci., in press.

  35. F. A. M'Ohamed,Mater. Sci. Engng 61 (1983) 149.

    Article  CAS  Google Scholar 

  36. T. B. Massalski andJ. E. Kittl,J. Austral. Inst. Metals 8 (1963) 91.

    Google Scholar 

  37. H. W. King,J. Mater. Sci. 1 (1966) 79.

    Article  CAS  Google Scholar 

  38. R. Hultgren, R. L. Orr, P. D. Anderson andK. Kelley, in “Selected Values of Thermodynamic Properties of Metals and Alloys” (Wiley, New York, 1963), p. 718.

    Google Scholar 

  39. R. C. Weast (Ed.), “CRC Handbook of Chemistry and Physics”, (CRC Press, Boca Raton, Florida, 1981) p. F-94.

    Google Scholar 

  40. R. Feder, A. S. Nowick andD. B. Rosenblatt,J. Appl. Phys. 29 (1958) 984.

    Article  CAS  Google Scholar 

  41. P. C. J. Gallagher,Metall. Trans. 1 (1970) 2429.

    CAS  Google Scholar 

  42. L. E. Murr, in “Interfacial Phenomena in Metals and Alloys” (Addison-Wesley, Reading, MA, 1975) p. 148.

    Google Scholar 

  43. T. S. Kê,J. Appl. Phys. 19 (1948) 285.

    Article  Google Scholar 

  44. P. Yavari andT. G. Langdon,Acta Metall. 30 (1982) 2181.

    Article  CAS  Google Scholar 

  45. C. Kittel, in “Introduction to Solid State Physics”, 5th Edn (Wiley, New York, 1976) p. 100.

    Google Scholar 

  46. W. D. Nix andB. Ilschner, in “Strength of Metals and Alloys (ICSMA 5)”, edited by P. Hansen, V. Gerold and G. Kostorz (Pergamon Press, Oxford, 1980) p. 1503.

    Google Scholar 

  47. R. Resnick andR. W. Balluffi,Trans. AIME 203 (1955) 1004.

    Google Scholar 

  48. J. Hino, C. Tomizuka andC. Wert,Acta Metall. 5 (1957) 41.

    Article  CAS  Google Scholar 

  49. K. J. Anusavice andR. T. Dehoff,Metall. Trans. 30 (1972) 1279.

    Article  Google Scholar 

  50. J. C. Fisher, J. H. Hollomon andD. Turnbull,Trans. AIME 175 (1948) 202.

    Google Scholar 

  51. F. A. Mohamed andT. G. Langdon,Acta Metall. 22 (1974) 779.

    Article  CAS  Google Scholar 

  52. R. Fuentes-Samaniego, W. D. Nix andG. M. Pound,Phil. Mag. A42 (1980) 591.

    Article  Google Scholar 

  53. R. Fuentes-Samaniego andW. D. Nix,Scripta Metall. 15 (1981) 15.

    Article  Google Scholar 

  54. R. Fuentes-Samaniego, W. D. Nix andG. M. Pound,Acta Metall. 29 (1981) 487.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raj, S.V. Creep behaviour of Cu-30% Zn at intermediate temaperatures. J Mater Sci 26, 3533–3543 (1991). https://doi.org/10.1007/BF00557142

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00557142

Keywords

Navigation