Skip to main content
Log in

Formation of silicon carbide whiskers and their microstructure

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Thermodynamic and kinetic conditions for the formation of SiC whiskers are established. The mechanism of their nucleation and growth are studied and, on this basis, the magnitude of the thermally activated barrier is determined from the rate of reduction data. The microstructures of whiskers are analysed and the role of interfacial tension between the nuclei and impurities, and the metallic iron catalyst is studied in relation to the formation of SiC whiskers. A possible reason for polytypism in SiC whiskers is also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Krishna andA. R. Verma,Z. Kristallogr. 121 (1965) 36.

    Article  CAS  Google Scholar 

  2. A. R. Verma andP. Krishna, in “Polymorphism and Polytypism in Crystals” (Wiley, New York, 1966) p. 13.

    Google Scholar 

  3. D. Pandey andP. Krishna, in “Silicon Carbide 1973” (University of South Carolina Press, Columbia, SC, 1974) p. 198.

    Google Scholar 

  4. L. V. Azaroff, in “dIntroduction to Solids” (Tata-McGrawHill, Bombay, 1977) p. 362.

    Google Scholar 

  5. W. Hume-Rothery andG. V. Raynor, in “The Structure of Metals and Alloys” (Institute of Metals, London, 1962) p. 186.

    Google Scholar 

  6. H. Jagodzimski andH. Arnold, in “Silicon Carbide a High Temperature Semiconductor”, Proceedings of the Conference on Silicon Carbide, Boston, MA, edited by J. R. O'Connor and J. Smittens (Pergamon Press, Oxford, 1960) p. 137.

    Google Scholar 

  7. A. E. Heuer, G. A. Fryburg, L. U. Ogbuji andT. E. Mitchell,J. Amer. Ceram. Soc. 61 (1976) 406.

    Article  Google Scholar 

  8. T. E. Mitchell, L. U. Ogbuji andA. H. Heuer,ibid. 61 (1976) 412.

    Article  Google Scholar 

  9. S. Shinozaki andK. R. Kingman,Acta Metall. 26 (1978) 769.

    Article  CAS  Google Scholar 

  10. N. Setaka andK. Ejiri,J. Amer. Ceram. Soc. 52 (1969) 60.

    Article  CAS  Google Scholar 

  11. S. Amelinckx andG. Strumane, in “Silicon Carbide a High Temperature Semiconductor”, Proceedings of the Conference on Silicon Carbide, Boston, MA, edited by J. R. O'Connor and J. Smittens (Pergamon Press, Oxford, 1960) p. 162.

    Google Scholar 

  12. J. G. Antonopoulos, J. Stoemenos, C. Jaussand andJ. Margail,J. Mater. Sci. Lett. 8 (1989) 1374.

    Article  CAS  Google Scholar 

  13. L. U. Ogbuji, T. E. Mitchell andA. H. Heuer,J. Amer. Ceram. Soc. 64 (1981) 91.

    Article  CAS  Google Scholar 

  14. Idem., ibid. 64 (1981) 100.

    Article  CAS  Google Scholar 

  15. K. Okamura, M. Sato, T. Matsuzawa andY. Hasegawa, in “Ultrastructure Processing of Advanced Ceramics”, edited by J. D. MacKenzie and D. R. Uhlrich (Wiley, New York, 1987) p. 501.

    Google Scholar 

  16. P. F. Knippenberg,Philips Res. Rep. 18 (1963) 161.

    CAS  Google Scholar 

  17. Steven R. Nutt,J. Amer. Ceram. Soc. 71 (1988) 149.

    Article  CAS  Google Scholar 

  18. J. G. Lee andI. B. Cutler,Ceram. Bull. 54 (1975) 195.

    CAS  Google Scholar 

  19. J. V. Milewski, F. D. Gac, J. J. Petrovic andS. R. Skaggs,J. Mater. Sci. 20 (1985) 1060.

    Article  Google Scholar 

  20. H. Wada, M. J. Wang andT. Y. Tien,J. Amer. Ceram. Soc. 71 (1988) 837.

    Article  CAS  Google Scholar 

  21. E. T. Turkdogan andJ. V. Vinters,Inst. Min. Metall. Trans. C 85 (1976) 117.

    Google Scholar 

  22. P. L. Walker Jr, M. Shelf andR. A. Anderson, in “Chemistry and Physics of Carbon”, Vol. 4, edited by P. L. Walker Jr (Edward Arnold, London, 1968) p. 317.

    Google Scholar 

  23. E. T. Turkdogan andJ. V. Vinters,Carbon 7 (1969) 101.

    Article  CAS  Google Scholar 

  24. Idem., ibid. 10 (1972) 97.

    Article  CAS  Google Scholar 

  25. G. R. Belton,Met. Trans. 3 (1972) 1465.

    Article  CAS  Google Scholar 

  26. D. Pohl andE. Scheil,Giesserei 43 (1956) 833.

    CAS  Google Scholar 

  27. T. J. Whalen, S. M. Kaufman andM. Hamenik Jr,Trans ASM 55 (1962) 779.

    Google Scholar 

  28. G. A. Bootsma, W. F. Knippenberg andG. Verspipi,J. Crystal. Growth 11 (1971) 297.

    Article  CAS  Google Scholar 

  29. J. R. O'Connor andJ. Smittens (eds), “Silicon Carbide a High Temperature Semiconductor”, Proceedings of the Conference on Silicon Carbide, Boston, MA (Pergamon Press, Oxford, 1960) p. 25.

    Google Scholar 

  30. R. V. Coleman andG. W. Sears,Acta Metall. 5 (1957) 131.

    Article  Google Scholar 

  31. L. I. van Torne,J. Appl. Phys. 37 (1966) 1849.

    Article  Google Scholar 

  32. S. R. Nutt,J. Amer. Ceram. Soc. 71 (1988) 149.

    Article  CAS  Google Scholar 

  33. S. Amelinex, in “Direct Observation of Dislocation” (Academic Press, New York, 1964) p. 139.

    Google Scholar 

  34. P. B. Hirsch, A. Howie, R. B. Nicholson, D. W. Pashley andM. J. Whelan, in “Electron Microscopy of Thin Crystals” (Krieger, Malabar, FL, 1977) p. 130.

    Google Scholar 

  35. J. D. Eshelby,J. Appl. Phys. 24 (1952) 176.

    Article  Google Scholar 

  36. J. J. Petrovic, J. V. Milewski, D. L. Rohr andF. D. Grac,J. Mater. Sci. 20 (1985) 1167.

    Article  Google Scholar 

  37. A. Jha andP. Grieveson,ibid. 25 (1990) 2299.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chrysanthou, A., Grieveson, P. & Jha, A. Formation of silicon carbide whiskers and their microstructure. J Mater Sci 26, 3463–3476 (1991). https://doi.org/10.1007/BF00557132

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00557132

Keywords

Navigation