Skip to main content
Log in

The effect of temperature on biochemical and molecular properties ofDrosophila alcohol dehydrogenase

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

The gene products of the two major alleles of alcohol dehydrogenase (ADH-F and ADH-S) have been subjected to kinetic and biochemical analyses over a range of temperatures. Although temperature was found to have a significant effect on both kinetic and biochemical properties ofDrosophila ADH, no significant differential effect was observed between the major ADH allozymes. The results are discussed within the context of the selective maintenance ofAdh polymorphism in natural populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alahiotis, S. N. (1982). Adaptation ofDrosophila enzymes to temperature. IV. Natural selection at the alcohol-dehydrogenase locus.Genetica 5981.

    Google Scholar 

  • Anderson, S. M., and McDonald, J. F. (1981a). A method for determining thein vivo stability ofDrosophila alcohol dehydrogenase (EC 1.1.1.1).Biochem. Genet. 19411.

    Google Scholar 

  • Anderson, S. M., and McDonald, J. F. (1981b). Effect of environmental alcohol onin vivo properties ofDrosophila alcohol dehydrogenase.Biochem. Genet. 19421.

    Google Scholar 

  • Anderson, S. M., and McDonald, J. F. (1981c). Changes in levels of alcohol dehydrogenase during the development ofDrosophila melanogaster.Can. J. Genet. Cytol. 23305.

    Google Scholar 

  • Anderson, S. M., and McDonald, J. F. (1983). Biochemical and molecular analysis of naturally occurring Adh variants inDrosophila melanogaster.Proc. Natl. Acad. Sci. USA 804798.

    Google Scholar 

  • Anderson, S. M., Santos, M., and McDonald, J. F. (1980). Comparative study of the thermostability of crude and purified preparations of alcohol dehydrogenase (EC 1.1.1.1) fromD. melanogaster.Dros. Info. Serv. 5513.

    Google Scholar 

  • Anderson, S. M., McDonald, J. F., and Santos, M. (1981). Selection at the Adh locus inDrosophila melanogaster: Adult survivorship-mortality in response to ethanol.Experientia 37463.

    Google Scholar 

  • Benyajati, C., Place, A. R., Powers, D. A., and Sofer, W. (1981). Alcohol dehydrogenase gene ofDrosophila melanogaster: Relationship of intervening sequences to functional domains in the protein.Proc. Natl. Acad. Sci. USA 782717.

    Google Scholar 

  • Cavener, D. R., and Clegg, M. T. (1981). Multigenic response to ethanol inDrosophila melanogaster.Evolution 351.

    Google Scholar 

  • Cleland, W. W. (1979). Statistical analysis of enzyme kinetic data.Meth. Enzymol. 63A103.

    Google Scholar 

  • Cornish-Bowden, A. (1979).Fundamentals of Enzyme Kinetics Butterworths, Boston, Chap. 10.

    Google Scholar 

  • Cornish-Bowden, A., and Endrenyi, L. (1981). Fitting of enzyme kinetic data without prior knowledge of weights.Biochem. J. 1931005.

    Google Scholar 

  • David, J. L., Bocquet, C., Arens, M., and Fouillett, P. (1976). Biological role of alcohol dehydrogenase in the tolerance ofDrosophila melanogaster to aliphatic alcohols: Utilization of an ADH-null mutant.Biochem. Genet. 14989.

    Google Scholar 

  • Davis, B. J. (1964). Disc electrophoresis. II. Method and application to human serum proteins.Ann. N.Y. Acad. Sci. 121404.

    Google Scholar 

  • Day, T. H., and Needham, L. (1974). Properties of alcohol dehydrogenase isozymes in a strain ofDrosophila melanogaster homozygous for the ADH-slow allele.Biochem. Genet. 11:167.

    Google Scholar 

  • Day, T. H., Hillier, P. C., and Clarke, B. (1974). Properties of genetically polymorphic isozymes of alcohol dehydrogenase inDrosophila melanogaster.Biochem. Genet. 11141.

    Google Scholar 

  • Everse, J., Zoll, L., Kahan, L., and Kaplan, N. (1971). Addition products of diphosphopyridine nucleotides with substrates of pyridine nucleotide linked dehydrogenases.Bioorgan. Chem. 1207.

    Google Scholar 

  • Grell, E. H., Jacobson, K. B., and Murphy, J. (1965). Alcohol dehydrogenase inDrosophila melanogaster: Isozymes and genetic variants.Science 14980.

    Google Scholar 

  • Fersht, A. R. (1977).Enzyme Structure and Mechanism W. H. Freeman, San Francisco.

    Google Scholar 

  • Fromm, H. J. (1975).Initial Rate Kinetics Springer-Verlag, Berlin.

    Google Scholar 

  • Hochachka, P. W., and Somero, G. N. (1973).Strategies of Biochemical Adaptation W. B. Saunders, Philadelphia, Chap. 7.

    Google Scholar 

  • Jacobson, K. B. (1968). Alcohol dehydrogenase ofDrosophila: Interconversion of isozymes.Science 159324.

    Google Scholar 

  • King, J. J., and McDonald, J. F. (1983). Genetic localization and biochemical characterization of a trans-acting regulatory effect inDrosophila.Genetics 10555.

    Google Scholar 

  • Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteria phage T4.Nature 227685.

    Google Scholar 

  • McDonald, J. F. (1983). The molecular basis of adaptation: A critical review of relevant ideas and observations.Annu. Rev. Ecol. System. 1477.

    Google Scholar 

  • McDonald, J. F., and Avise, J. C. (1976). Evidence for the adaptive significance of enzyme activity levels. Interspecific variation in α-glycerol phosphate dehydrogenase and alcohol dehydrogenase inDrosophila.Biochem. Genet. 14347.

    Google Scholar 

  • McDonald, J. F., and Ayala, F. J. (1978). Genetic and biochemical basis of enzyme variation in natural populations I. Alcohol dehydrogenase inD. melanogaster.Genetics 89371.

    Google Scholar 

  • McDonald, J. F., Chambers, G., David, J., and Ayala, F. J. (1977). Adaptive response due to changes in gene regulation: A study withDrosophila.Proc. Natl. Acad. Sci. USA 744562.

    Google Scholar 

  • McDonald, J. F., Anderson, S. M., and Santos, M. (1980). Biochemical differences between products of the ADH locus inDrosophila.Genetics 951013.

    Google Scholar 

  • McElfresh, K. C., and McDonald, J. F. (1983). The effect of alcohol stress on micotinamide adenine dinucleotide (NAD+) levels inDrosophila.Biochem. Genet. 21365.

    Google Scholar 

  • Mosteller, F., and Tukey, J. W. (1977).Data Analysis and Regression Addison-Wesley, Reading, Mass., p. 333.

    Google Scholar 

  • Oakeshott, J., Gibson, J., Anderson, P., Knibb, W., Anderson, D., and Chambers, G. (1982). Alcohol dehydrogenase and glycerol-3-phosphate dehydrogenase clines inD. melanogaster on different continents.Evolution 3686.

    Google Scholar 

  • Ornstein, L. (1964). Disc electrophoresis. I. Background and theory.Ann. N.Y. Acad. Sci. 121321.

    Google Scholar 

  • Sampsell, B. (1977). Isolation and genetic characterization of alcohol dehydrogenase thermostability variants occurring in natural populations ofDrosophila melanogaster.Biochem. Genet. 15971.

    Google Scholar 

  • Sampsell, B., and Sims, S. (1982). Effect ofadh genotype and heat stress on alcohol tolerance inDrosophila melanogaster.Nature 296853.

    Google Scholar 

  • Schwartz, M., and Sofer, W. (1976). Diet-induced alterations in distributions of multiple forms of alcohol dehydrogenase inDrosophila.Nature 263129.

    Google Scholar 

  • Schwartz, M., O'Donnell, J., and Sofer, W. (1979). Origin of the multiple forms of alcohol dehydrogenase fromDrosophila melanogaster.Arch. Biochem. Biophys. 194365.

    Google Scholar 

  • Smith, I. (1968). Acrylamide gel electrophoresis. In Smith, E. (ed.),Chromatographic and Electrophoretic Techniques Interscience, New York, p. 365.

    Google Scholar 

  • Shadravan, F., and McDonald, J. (1986). The secondary product threshold model andAdh polymorphism inDrosophila (submitted for publication).

  • Thatcher, D. R., and Shiekh, R. (1981). The relative conformational stability of the alcohol dehydrogenase allenzymes of the fruitflyDrosophila melanogaster.Biochem. J. 197111.

    Google Scholar 

  • Ursprung, H., and Leone, J. (1965). Alcohol dehydrogenase: A polymorphism inDrosophila melanogaster.J. Exp. Zool. 160147.

    Google Scholar 

  • van Delden, W. A. (1982). The alcohol dehydrogenase polymorphism inDrosophila melanogaster. Selection at an enzyme locus. In Hecht, M., Wallace, B., and Prance, G. T. (eds.),Selection at an Enzyme Locus, Evolutionary Biology Vol. 15, p. 187.

  • van Delden, W. A., and Kamping, A. (1980). The alcohol dehydrogenase polymorphism ofD. melanogaster. IV. Survival at high temperature.Genetica 51179.

    Google Scholar 

  • van Delden, W. A., Boerema, A. C., and Kamping, A. (1978). The alcohol dehydrogenase polymorphism in populations ofDrosophila melanogaster. I. Selection in different environments.Genetics 90164.

    Google Scholar 

  • Vigue, C. L., and Johnson, F. M. (1973). Isozyme variability of the genusDrosophila. VI. Frequency-property-environment relationships of allelic alcohol dehydrogenases inD. melanogaster.Biochem. Genet. 9213.

    Google Scholar 

  • Wilkinson, G. N. (1961). Statistical estimations in enzyme kinetics.Biochem. J. 80324.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

A significant portion of the calculations was made possible by a grant from DECOR (1982) which provided a PDP-11/34 minicomputer to the Department of Genetics, University of Georgia. This work was supported by NSF Grant DEB-82-00965 to J.M.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McElfresh, K.C., McDonald, J.F. The effect of temperature on biochemical and molecular properties ofDrosophila alcohol dehydrogenase. Biochem Genet 24, 873–889 (1986). https://doi.org/10.1007/BF00554526

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00554526

Key words

Navigation