Skip to main content
Log in

New isozyme systems for maize (Zea mays L.): Aconitate hydratase, adenylate kinase, NADH dehydrogenase, and shikimate dehydrogenase

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Electrophoretic variation and inheritance of four novel enzyme systems were studied in maize (Zea mays L.). A minimum of 10 genetic loci collectively encodes isozymes of aconitate hydratase (ACO; EC 4.2.1.3.), adenylate kinase (ADK; EC 2.7.4.3), NADH dehydrogenase (DIA; EC 1.6.99.—), and shikimate dehydrogenase (SAD; EC 1.1.1.25). At least four loci are responsible for the genetic control of ACO. Genetic data for two of the encoding loci,Aco1 andAco4, demonstrated that at least two maize ACOs are active as monomers. Analysis of organellar preparations suggests that ACO1 and ACO4 are localized in the cytosolic and mitochondrial subcellular fractions, respectively. Maize ADK is encoded by a single nuclear locus,Adk1, governing monomeric enzymes that are located in the chloroplasts. Two cytosolic and two mitochondrial forms of DIA were electrophoretically resolved. Segregation analyses demonstrated that the two cytosolic isozymes are controlled by separate loci,Dia1 andDia2, coding for products that are functional as monomers (DIA1) and dimers (DIA2). The major isozyme of SAD is apparently cytosolic, although an additional faintly staining plastid form may be present. Alleles atSad1 are each associated with two bands that cosegregate in controlled crosses. Linkage analyses and crosses with B-A translocation stocks were effective in determining the map locations of six loci, including the previously described but unmapped locusAcp4. Several of these loci were localized to sparsely mapped regions of the genome.Dia2 andAcp4 were placed on the distal portion of the long arm of chromosome 1, 12.6 map units apart.Dia1 was localized to chromosome 2, 22.2 centimorgans (cM) fromB1. Aco1 was mapped to chromosome 4, 6.2 cM fromsu1. Adk1 was placed on the poorly marked short arm of chromosome 6, 8.1 map units fromrgd1. Less than 1% recombination was observed betweenGlu1 (on chromosome 10) andSad1. In contrast to many other maize isozyme systems, there was little evidence of gene duplication or of parallel linkage relationships for these allozyme loci.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allard, R. W. (1956). Formulas and tables to facilitate the calculation of recombination values in heredity.Hilgardia 24235.

    Google Scholar 

  • Balinsky, D., and Davies, D. D. (1962). Aromatic biosynthesis in higher plants. IV. The distribution of dehydroshikimic reductase and dehydroquinase.J. Exp. Bot. 13414.

    Google Scholar 

  • Beckett, J. B. (1978). B-A translocations in maize. I. Use in locating genes by chromosome arms.J. Hered. 6927.

    Google Scholar 

  • Beckett, J. (1988). Cytogenetic, genetic and plant breeding applications of B-A translocations in maize. In Tsuchiya, T., and Gupta, P. K. (eds.),Chromosome Engineering in Plants—Genetics, Breeding, Evolution Elsevier, Amsterdam.

    Google Scholar 

  • Bretting, P. K., Goodman, M. M., and Stuber, C. W. (1987). Karyological and isozyme variation in West Indian and allied American mainland races of maize.Am. J. Bot. 741601.

    Google Scholar 

  • Brown, A. H. D. (1982). Population-genetic structure and optimal sampling of land races of barley from Iran.Genetica 5885.

    Google Scholar 

  • Brown, A. H. D. (1983). Barley. In Tanksley, S. D., and Orton, T. J. (eds.),Isozymes in Plant Genetics and Breeding, Part B Elsevier, Amsterdam.

    Google Scholar 

  • Cardy, B. J., and Kannenberg, L. W. (1982). Allozymic variability among maize inbred lines and hybrids: Applications for cultivar identification.Crop Sci. 221016.

    Google Scholar 

  • Cardy, B. J., Stuber, C. W., Wendel, J. F., and Goodman, M. M. (1983).Techniques for Starch Gel Electrophoresis of Enzymes from Maize (Zea mays L.), rev. ed., Institute of Statistics Mimeograph Series No. 1317R, North Carolina State University, Raleigh.

    Google Scholar 

  • Chenicek, K. J. (1984).Evidence for the Genetic Control and Subcellular Locations of Aconitase Isozymes in Triticeae species M.S. thesis, Texas A&M University, College Station.

    Google Scholar 

  • Chenicek, K. J., and Hart, G. E. (1987). Identification and chromosomal locations of aconitase gene loci in Triticeae Species.Theor. Appl. Genet. 74261.

    Google Scholar 

  • Clayton, J. W., and Tretiak, D. N. (1972). Amine-citrate buffers for pH control in starch gel electrophoresis.J. Fish. Res. Board Can. 291169.

    Google Scholar 

  • Doebley, J. F., Goodman, M. M., and Stuber, C. W. (1983). Isozyme variation in maize from the southwestern United States: Taxonomic and anthropological implications.Maydica 2897.

    Google Scholar 

  • Doebley, J. F., Goodman, M. M., and Stuber, C. W. (1984). Isoenzymatic variation in Zea (Gramineae).Syst. Bot. 9203.

    Google Scholar 

  • Doebley, J. F., Goodman, M. M., and Stuber, C. W. (1985). Isozyme variation in the races of maize from Mexico.Am. J. Bot. 72629.

    Google Scholar 

  • Doebley, J. F., Goodman, M. M., and Stuber, C. W. (1986). Exceptional genetic divergence of northern flint corns.Am. J. Bot. 7364.

    Google Scholar 

  • Doebley, J. F., Wendel, J. F., Smith, S. C., Stuber, C. W., and Goodman, M. M. (1987). The origin of cornbelt maize: The isozyme evidence.Econ. Bot. 42120.

    Google Scholar 

  • Edwards, G. E., and Huber, S. C. (1981). The C4 pathway. In Hatch, M. D., and Boardman, N. K. (eds.),The Biochemistry of Plants, Vol. 8. Photosynthesis Academic Press, New York.

    Google Scholar 

  • Edwards, M. D., Stuber, C. W., and Wendel, J. F. (1987). Molecular marker facilitated investigations of quantitative trait loci in maize. I. Numbers, genomic distribution, and types of gene action.Genetics 116113.

    Google Scholar 

  • Feierabend, J., and Brassel, D. (1977). Subcellular localization of shikimic dehydrogenase in higher plants.Z. Pflanzenphysiol. 82334.

    Google Scholar 

  • Gastony, G. J., and Gottlieb, L. D. (1985). Genetic variation in the homosporous fernPellaea andromedifolia.Am. J. Bot. 72257.

    Google Scholar 

  • Goodman, M. M., and Stuber, C. W. (1980). Genetic identification of lines and crosses using isoenzyme electrophoresis.Corn Sorghum Res. Conf. Proc. 3510.

    Google Scholar 

  • Goodman, M. M., and Stuber, C. W. (1983a). Races of maize. VI. Isozyme variation among races of maize in Bolivia.Maydica 28169.

    Google Scholar 

  • Goodman, M. M., and Stuber, C. W. (1983b). Maize. In Tanksley, S. D., and Orton, T. J. (eds.),Isozymes in Plant Genetics and Breeding, Part B Elsevier. Amsterdam.

    Google Scholar 

  • Goodman, M. M., Stuber, C. W., Lee, C.-N., and Johnson, F. M. (1980a). Genetic control of malate dehydrogenase isozymes in maize.Genetics 94153.

    Google Scholar 

  • Goodman, M. M., Stuber, C. W., Newton, K., and Weissinger, H. H. (1980b). Linkage relationships of 19 enzyme loci in maize.Genetics 96697.

    Google Scholar 

  • Harris, H., and Hopkinson, D. A. (1976).Handbook of Enzyme Electrophoresis in Human Genetics North-Holland, Amsterdam.

    Google Scholar 

  • Harry, D. E. (1986). Inheritance and linkage of isozyme variants in incense-cedar.J. Hered. 77261.

    Google Scholar 

  • Helentjaris, T., Weber, D. F., and Wright, S. (1986). Use of monosomics to map cloned DNA fragments in maize.Proc. Natl. Acad. Sci. USA 836035.

    Google Scholar 

  • Helentjaris, T., Weber, D. F., and Wright, S. (1987). Duplicate sequences in maize and identification of their genomic locations through restriction fragment length polymorphisms.Genetics 118353.

    Google Scholar 

  • Jarret, R. L., and Litz, R. E. (1986). Enzyme polymorphism inMusa acuminata Colla.J. Hered. 77183.

    Google Scholar 

  • Jensen, R. A. (1985). The shikimate/arogenate pathway: Link between carbohydrate metabolism and secondary metabolism.Physiol. Plant. 66164.

    Google Scholar 

  • Kahler, A. L. (1983). Inheritance and linkage of acid phosphatase locusAcp4 in maize.J. Hered. 74239.

    Google Scholar 

  • Koebner, R. M. D., and Shepherd, K. W. (1982). Shikimate dehydrogenase—a biochemical marker for group 5 chromosomes in the Triticinae.Genet. Res. Cambr. 41209.

    Google Scholar 

  • Millar, C. I. (1985). Inheritance of allozyme variants in bishop pine (Pinus muricata D. Don).Biochem. Genet. 23933.

    Google Scholar 

  • Morden, C. W., Doebley, J. F., and Schertz, K. F. (1988). Genetic control and subcellular localization of aconitase isozymes inSorghum. J. Hered. (in press).

  • Murakami, S., and Strotmann, H. (1978). Adenylate kinase bound to envelope membranes of spinach chloroplasts.Arch. Biochem. Biophys. 18530.

    Google Scholar 

  • Ott, L., and Scandalios, J. G. (1978). Genetic control and linkage relationships among aminopeptidases of maize.Genetics 89137.

    Google Scholar 

  • Pryor, A. J. (1978). Mapping of glucosidase on chromosome 10.Maize Genet. Coop. Newslett.5214.

    Google Scholar 

  • Rhoades, M. M. (1951). Duplicate genes in maize.Am. Nat. 85105.

    Google Scholar 

  • Rothe, G. M. (1974). Intracellular compartmentation and regulation of two shikimate dehydrogenase isoenzymes inPisum sativum.Z. Pflanzenphysiol. 74152.

    Google Scholar 

  • Shaw, C. R., and Prasad, R. (1970). Starch gel electrophoresis of enzymes—a compilation of recipes.Biochem. Genet. 4297.

    Google Scholar 

  • Siciliano, M. J., and Shaw, C. R. (1976). Separation and visualization of enzymes on gels. In Smith, I. (ed.),Chromatographic and Electrophoretic Techniques, Vol. II Heinemann, London.

    Google Scholar 

  • Sisco, P. H., Wendel, J. F., and Stuber, C. W. (1987).Acp4 is the most distal marker on chromosome 1L.Maize Genet. Coop. Newslett. 6186.

    Google Scholar 

  • Smith, J. S. C., Goodman, M. M., and Stuber, C. W. (1984). Variation within teosinte. III. Numerical analysis of allozyme data.Econ. Bot. 3897.

    Google Scholar 

  • Smith, J. S. C., Goodman, M. M., and Stuber, C. W. (1985a). Genetic variability within U.S. maize germplasm. I. Historically important lines.Crop Sci. 25550.

    Google Scholar 

  • Smith, J. S. C., Goodman, M. M., and Stuber, C. W. (1985b). Genetic variability within U.S. maize germplasm. II. Widely used inbred lines 1970 to 1979.Crop Sci. 25681.

    Google Scholar 

  • Stuber, C. W., and Goodman, M. M. (1983a). Allozyme genotypes for popular and historically important inbred lines of corn,Zea mays L. USDA Agr. Res. Serv., Agr. Res. Results, Southern Series, No. 16.

  • Stuber, C. W., and Goodman, M. M. (1983b). Inheritance, intracellular localization, and genetic variation of phosphoglucomutase isozymes in maize (Zea mays L.).Biochem. Genet. 21667.

    Google Scholar 

  • Stuber, C. W., and Goodman, M. M. (1983c). Localization ofGot2 isozymes in maize.Maize Genet. Coop. Newslett. 57128.

    Google Scholar 

  • Stuber, C. W., and Goodman, M. M. (1984). Inheritance, intracellular localization, and genetic variation of 6-phophogluconate dehydrogenase isozymes in maize.Maydica 29453.

    Google Scholar 

  • Stuber, C. W., Goodman, M. M., and Johnson, F. M. (1977). Genetic control and racial variation ofB-glucosidase isozymes in maize (Zea mays L.).Biochem. Genet. 15383.

    Google Scholar 

  • Stuber, C. W., Moll, R. H., Goodman, M. M., Schaffer, H. E., and Weir, B. S. (1980). Allozyme frequency changes associated with selection for increased grain yield in maize (Zea mays L.).Genetics 95225.

    Google Scholar 

  • Stuber, C. W., Goodman, M. M., and Moll, R. H. (1982). Improvement of ear number resulting from selection at allozyme loci in a maize population.Crop Sci. 22737.

    Google Scholar 

  • Stuber, C. W., Edwards, M. D., and Wendel, J. F. (1987). Molecular marker facilitated investigations of quantitative trait loci in maize. II. Factors influencing yield and its component traits.Crop Sci. 27639.

    Google Scholar 

  • Stuber, C. W., Wendel, J. F., Goodman, M. M., and Smith, J. S. C. (1988). Techniques and scoring procedures for starch gel electrophoresis of enzymes from maize (Zea mays L.).N.C. State Expt. Res. Bull., No. 286, 87 pp.

  • Suiter, K. A., Wendel, J. F., and Case, J. S. (1983). LINKAGE-1: A pascal computer program for the detection and analysis of genetic linkage.J. Hered. 74203.

    Google Scholar 

  • Tanksley, S. D. (1984). Linkage relationships and chromosomal locations of enzyme-coding genes in pepper,Capsicum annuum.Chromosoma 89352.

    Google Scholar 

  • Vallejos, E. (1983). Enzyme activity staining. In Tanksley, S. D., and Orton, T. J. (eds.),Isozymes in Plant Genetics and Breeding Elsevier, Amsterdam.

    Google Scholar 

  • Weeden, N. F. (1984). Distinguishing among white-seeded bean cultivars by means of allozyme genotypes.Euphytica 33199.

    Google Scholar 

  • Weeden, N. F., and Gottlieb, L. D. (1980). Isolation of cytoplasmic enzymes from pollen.Plant Physiol. 66400.

    Google Scholar 

  • Weeden, N. F., and Robinson, R. W. (1986). Allozyme segregation ratios in the interspecific crossCucurbita maxima XC. ecuadorensis suggest that hybrid breakdown is not caused by minor alterations in chromosome structure.Genetics 114593.

    Google Scholar 

  • Wendel, J. F., and Beckett, J. B. (1987). A new enzyme marker for the short arm of chromosome 6.Maize Genet. Coop. Newslett. 6119.

    Google Scholar 

  • Wendel, J. F., Stuber, C. W., and Goodman, M. M. (1985a). Twelve new isozyme loci in maize: Progress report on chromosomal locations, and the subunit composition and subcellular localization of their products.Maize Genet. Coop. Newslett. 5987.

    Google Scholar 

  • Wendel, J. F., Stuber, C. W., and Goodman, M. M. (1985b). Mapping data for 34 isozyme loci currently being studied.Maize Genet. Coop. Newslett. 5990.

    Google Scholar 

  • Wendel, J. F., Stuber, C. W., and Goodman, M. M. (1986a). Additional mapping experiments with maize isozyme loci.Maize Genet. Coop. Newslett. 60120.

    Google Scholar 

  • Wendel, J. F., Stuber, C. W., Edwards, M. D., and Goodman, M. M. (1986b). Duplicated chromosome segments inZea mays L.: Further evidence from hexokinase isozymes.Theor. Appl. Genet. 72178.

    Google Scholar 

  • Wendel, J. F., Edwards, M. D., and Stuber, C. W. (1987). Evidence for multilocus genetic control of preferential fertilization in maize.Heredity 58297.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by grants from Pioneer Hi-Bred International, Inc., of Johnston, Iowa, the National Institute of Health (Research Grant GM11546), and the United States Department of Agriculture (Competitive Research Grant 83-CRCR-1-1273). This is Paper No. 11372 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wendel, J.F., Goodman, M.M., Stuber, C.W. et al. New isozyme systems for maize (Zea mays L.): Aconitate hydratase, adenylate kinase, NADH dehydrogenase, and shikimate dehydrogenase. Biochem Genet 26, 421–445 (1988). https://doi.org/10.1007/BF00554077

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00554077

Key words

Navigation