Journal of Materials Science

, Volume 27, Issue 1, pp 255–262 | Cite as

Preparation of SiBx and SiB6 plates by chemical vapour deposition of SiCl4 + B2H6 system

  • Masakazu Mukaida
  • Takashi Goto
  • Toshio Hirai


SiBx and SiB6 plates were prepared by chemical vapour deposition (CVD) using SiCl4, B2H6 and H2 gases under the conditions of deposition temperatures (Tdep) from 1323–1773 K, total gas pressures (Ptot) from 4–40 kPa and B/Si source gas ratio (mB/Si=2B2H6/SiCl4) from 0.2–2.8. The effects of CVD conditions on the morphology, structure and composition of the deposits were examined. High-purity and high-density SiBx and SiB6 plates about 1 mm thick were obtained at the deposition rates of 71 and 47 nm s−1, respectively. The lattice parameter, composition and density of CVD SiBx plates were dependent on their non-stoichiometry. The lattice parameter,a, was 0.6325 nm, butc ranged from 1.262–1.271 nm.The B/Si atomic ratio ranged from 3.1–5.0, and the density ranged from 2.39–2.45×103 kg m−3. The CVD SiB6 plates showed constant values of lattice parameters (a=1.444 nm,b=1.828 nm,c=0.9915 nm), composition (B/Si=6.0) and density (2.42×103 kg m−3), independent of CVD conditions.


Polymer Chemical Vapour Deposition Vapour Deposition Deposition Rate Chemical Vapour 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Moissan andA. Stock,Compt. Rend. 131 (1900) 139.Google Scholar
  2. 2.
    E. Colton,J. Amer. Chem. Soc. 82 (1960) 1002.Google Scholar
  3. 3.
    C. F. Cline,Nature 15 (1958) 476.Google Scholar
  4. 4.
    R. F. Giese Jr, J. Economy andV. I. Matkovich,Z. Kristallogr. 122 (1965) 144.Google Scholar
  5. 5.
    C. F. Cline andD. E. Sands,Nature 185 (1960) 456.Google Scholar
  6. 6.
    B. Magnusson andC. Brosset,Acta Chem. Scand. 16 (1960) 449.Google Scholar
  7. 7.
    V. I. Matkovich,Acta Crystallogr. 13 (1960) 679.Google Scholar
  8. 8.
    T. Goto, M. Mukaida andT. Hirai, in Symposium Proceedings, “Chemical Vapor Deposition”, Boston, November 1989, edited by T. M. Besmann and B. Gallois (Materials Research Society, Pittsburgh, PA, 1990) in press.Google Scholar
  9. 9.
    N. N. Zhuravlev,Kristallogr. 1 (1956) 666.Google Scholar
  10. 10.
    M. Vlasse, G. A. Slack, M. Garbauskas, J. S. Kasper andJ. C. Viala,J. Solid State Chem. 63 (1986) 31.Google Scholar
  11. 11.
    C. Wood, D. Emin, R. S. Feigelson andI. D. R. Mackinon, in Symposium Proceedings, Vol. 97, “Novel Refractory Semiconductors”, California, April 1987, edited by D. Emin, T. L. Aselage and C. Wood (Materials Research Society, Pittsburgh, PA, 1987) p. 33.Google Scholar
  12. 12.
    H. F. Rizzo, B. C. Weber andM. A. Schwartz,J. Amer. Ceram. Soc. 43 (1960) 497.Google Scholar
  13. 13.
    R. S. Feigelson andW. D. Kingery,Amer. Ceram. Soc. Bull. 42 (1963) 688.Google Scholar
  14. 14.
    S. Motojima, K. Sugiyama andY. Takahashi,Bull. Chem. Soc. Jpn 48 (1975) 1463.Google Scholar
  15. 15.
    I. V. Petrusherich, L. A. Nisel'son, A. I. Belyaev andM. A. Gurevich,Izv. Akad. Nauk SSR. Neorg. Mater. 3 (1967) 1389.Google Scholar
  16. 16.
    C. Powell andI. Campbell,Monatsh. Chem. 88 (1957) 180.Google Scholar
  17. 17.
    R. R. Dirkx andK. E. Spear, “Emergent Process Methods for High-Technology Ceramics”, Materials Science Research, Vol. 17 edited by R. F. Davis, H. Palmour III and R. L. Porter (Plenum, New York, 1982) p. 359.Google Scholar
  18. 18.
    B. Armas, C. Combescure, J. M. Dusseau, T. P. Lepetre, J. L. Robert andB. Pistoulet,J. Less-Common Metals 47 (1976) 135.Google Scholar
  19. 19.
    B. Armas andC. Combescure, in “Proceedings of the 6th International Conference on Chemical Vapor Deposition”, Atlanta, October 1977, edited by L. F. Donaghey, P. Rai-Choudhury and R. N. Tauber (Electrochemical Society, Princeton, NJ, 1977) p. 181.Google Scholar
  20. 20.
    M. Mukaida, T. Goto andT. Hirai,J. Mater. Sci. 25 (1990) 1069.Google Scholar
  21. 21.
    R. W. Olesinski andG. J. Abbashian,Bull. Alloy Phase Diagram 5 (1984) 478.Google Scholar
  22. 22.
    B. Armas, G. Male, D. Salanoubat, C. Chatillon andM. Allibert,J. Less-Common Metals 82 (1981) 245.Google Scholar
  23. 23.
    E. Colton,J. Inorg. Nucl. Chem. 17 (1961) 108.Google Scholar
  24. 24.
    L. Kaufmann, B. Uhrenius, D. Birnie andK. Taylor,Calphad 8 (1984) 25.Google Scholar
  25. 25.
    C. Jiang, T. Goto andT. Hirai,J. Mater. Sci. 25 (1990) 1086.Google Scholar
  26. 26.
    H. F. Rizzo andL. R. Bidwell,J. Amer. Ceram. Soc. 43 (1960) 550.Google Scholar
  27. 27.
    M. Beauvy,J. Less-Common Metals 90 (1983) 169.Google Scholar
  28. 28.
    I. A. Howard, C. L. Beckel andD. Emin, in Symposium Proceedings, Vol. 97, “Novel Refractory Semiconductors”, California, April 1987, edited by D. Emin, T. L. Aselage and C. Wood (Materials Research Society, Pittsburgh, PA, 1987) p. 39.Google Scholar
  29. 29.
    C. Wood andD. Emin,Phys. Rev. B29 (1984) 4582.Google Scholar
  30. 30.
    M. V. Vlasova, N. G. Kakazey, T. Y. Kosolapova, G. N. Makarenko, E. V. Marek, D. Uskokovic andM. M. Ristic,J. Mater. Sci. 15 (1980) 1041.Google Scholar
  31. 31.
    F. W. Glaser, D. Moskowitz andB. Post,J. Appl. Phys. 24 (1953) 731.Google Scholar
  32. 32.
    R. F. Adamsky,Acta Crystallogr. 11 (1958) 744.Google Scholar
  33. 33.
    C. F. Cline,J. Electrochem. Soc. 106 (1959) 322.Google Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • Masakazu Mukaida
    • 1
  • Takashi Goto
    • 1
  • Toshio Hirai
    • 1
  1. 1.Institute for Materials ResearchTohoku UniversitySendaiJapan

Personalised recommendations