Skip to main content

Effect of Antisolvent Type and Concentration on Morphology and Crystal Size of (NH4)3ScF6 Obtained by Antisolvent Crystallization

  • Conference paper
  • First Online:
Rare Metal Technology 2022

Abstract

Scandium is a metal of value with increasing demand but limited supply. During the valorization of bauxite residue, scandium becomes concentrated in an NH4F strip liquor, from which it can be recovered as (NH4)3ScF6 by antisolvent crystallization. This study investigates the use of different antisolvents and their concentrations on the morphology and crystal size of the (NH4)3ScF6 crystals produced. The antisolvents include alcohols, ketones, and a sulfoxide. These were added all at once, either pure or diluted, to the aqueous solution to attain final concentration of 2, 4, or 8 mol/L total solution in separate experiments. Changes in the functional group and concentration of the antisolvents were observed to induce morphological and crystal size modifications of (NH4)3ScF6. The differences are likely due to the specific interactions of the antisolvent molecules with the atoms at the different faces of the crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. U.S. Geological Survey (2021) Mineral commodity summaries 2021. Reston, Virginia

    Google Scholar 

  2. Duyvesteyn WPC, Putnam GF (2014) Scandium: a review of the element, its characteristics and current and emerging commercial applications. Nevada, EMC Metal Corporation White Paper

    Google Scholar 

  3. Krishnamurthy N, Gupta CK (2016) Extractive metallurgy of rare earths, 2nd edn. CRC Press Taylor and Francis Group, New York

    Google Scholar 

  4. Shaoquan X, Suqing L (1996) Review of the extractive metallurgy of scandium in China (1978–1991). Hydrometallurgy 42:337–343. https://doi.org/10.1016/0304-386X(95)00086-V

    Article  Google Scholar 

  5. Wang W, Pranolo Y, Cheng CY (2011) Metallurgical processes for scandium recovery from various resources: a review. Hydrometallurgy 108:100–108. https://doi.org/10.1016/j.hydromet.2011.03.001

    Article  CAS  Google Scholar 

  6. Liu Y, Naidu R (2014) Hidden values in bauxite residue (red mud): Recovery of metals. Waste Manag 34:2662–2673. https://doi.org/10.1016/j.wasman.2014.09.003

    Article  CAS  Google Scholar 

  7. Liu Z, Li H (2015) Metallurgical process for valuable elements recovery from red mud—a review. Hydrometallurgy 155:29–43. https://doi.org/10.1016/j.hydromet.2015.03.018

    Article  CAS  Google Scholar 

  8. Onghena B, Borra CR, van Gerven T, Binnemans K (2015) Selective recovery of scandium (III) from bauxite residue leachates by Sslvent extraction with a carboxyl-functionalised ionic liquid. In: Bauxite residue valorization and best practices. Leuven, pp 331–338

    Google Scholar 

  9. Harata M, Nakamura T, Yakushiji H, Okabe TH (2008) Production of scandium and Al–Sc alloy by metallothermic reduction. Miner Process Extr Metall 117:95–99. https://doi.org/10.1179/174328508X290876

    Article  CAS  Google Scholar 

  10. Yagmurlu B, Zhang W, Avdibegovic D, et al (2018) Advances on scandium recovery beyond state of the art. In: ALTA 2018 uranium-REE-lithium proceedings. Perth, pp 85–93

    Google Scholar 

  11. Yagmurlu B, Dittrich C, Friedrich B (2018) Effect of aqueous media on the recovery of scandium by selective precipitation. Metals (Basel) 8:314. https://doi.org/10.3390/met8050314

    Article  CAS  Google Scholar 

  12. Kaya Ş, Peters EM, Forsberg K et al (2018) Scandium recovery from an ammonium fluoride strip liquor by anti-solvent crystallization. Metals (Basel) 8:767. https://doi.org/10.3390/met8100767

    Article  CAS  Google Scholar 

  13. Peters EM, Kaya Ş, Dittrich C, Forsberg K (2019) Recovery of scandium by crystallization techniques. J Sustain Metall 5:48–56. https://doi.org/10.1007/s40831-019-00210-4

    Article  Google Scholar 

  14. Peters EM, Kaya Ş, Dittrich C, et al (2020) Recovery of alcohol after anti-solvent precipitation of (NH4)3ScF6 from NH4F strip liquors. In: XXX international mineral processing congress 2020. Cape Town

    Google Scholar 

  15. Haleblian JK (1975) Characterization of habits and crystalline modification of solids and their pharmaceutical applications. J Pharm Sci 64:1269–1288. https://doi.org/10.1002/jps.2600640805

    Article  CAS  Google Scholar 

  16. Nokhodchi A, Bolourtchian N, Dinarvand R (2003) Crystal modification of phenytoin using different solvents and crystallization conditions. Int J Pharm 250:85–97. https://doi.org/10.1016/S0378-5173(02)00488-X

    Article  CAS  Google Scholar 

  17. Tran TTD, Tran PHL, Park JB, Lee BJ (2012) Effects of solvents and crystallization conditions on the polymorphic behaviors and dissolution rates of valsartan. Arch Pharm Res 35:1223–1230. https://doi.org/10.1007/s12272-012-0713-7

    Article  CAS  Google Scholar 

  18. Khamskii EV (1976) Some problems of crystal habit modification. In: Mullin JW (ed) Industrial crystallization. Plenum Press, New York

    Google Scholar 

  19. Zhou X, Shan J, Chen D, Li H (2019) Tuning the crystal habits of organic explosives by antisolvent crystallization: the case study of 2,6-dimaino-3,5-dinitropyrazine-1-oxid (LLM-105). Crystals 9:392. https://doi.org/10.3390/cryst9080392

  20. Di Martino P, Censi R, Malaj L et al (2007) Influence of solvent and crystallization method on the crystal habit of metronidazole. Cryst Res Technol 42:800–806. https://doi.org/10.1002/crat.200710908

    Article  CAS  Google Scholar 

  21. Larsen KL, Nielsen R, Do TT (2013) Production of channel type cyclodextrin crystals. US Patent Application No. 14/383,891

    Google Scholar 

  22. Nti-Gyabaah J, Gbewonyo K, Chiew YC (2010) Solubility of artemisinin in different single and binary solvent mixtures between (284.15 and 323.15) K and NRTL interaction parameters. J Chem Eng Data 55:3356–3363. https://doi.org/10.1021/je100125x

    Article  CAS  Google Scholar 

  23. Abarca-Vargas R, Peña Malacara CF, Petricevich VL (2016) Characterization of chemical compounds with antioxidant and cytotoxic activities in bougainvillea x buttiana holttum and standl, (Var. rose) extracts. Antioxidants 5:45. https://doi.org/10.3390/antiox5040045

  24. Gupta MN, Batra R, Tyagi R, Sharma A (1997) Polarity index: the guiding solvent parameter for enzyme stability in aqueous-organic cosolvent mixtures. Biotechnol Prog 13:284–288. https://doi.org/10.1021/bp9700263

    Article  CAS  Google Scholar 

  25. Sudha C, Srinivasan K (2014) Understanding the effect of solvent polarity on the habit modification of monoclinic paracetamol in terms of molecular recognition at the solvent crystal/interface. Cryst Res Technol 49:865–872. https://doi.org/10.1002/crat.201400200

    Article  CAS  Google Scholar 

  26. Boistelle R (1976) Survey of crystal modification in solution. In: Mullin JW (ed) Industrial crystallization. Plenum Press, New York

    Google Scholar 

  27. Gouthami KS, Kumar D, Thipparaboina R et al (2015) Can crystal engineering be as beneficial as micronisation and overcome its pitfalls?: A case study with cilostazol. Int J Pharm 491:26–34. https://doi.org/10.1016/j.ijpharm.2015.06.009

    Article  CAS  Google Scholar 

  28. Peters EM, Svärd M, Forsberg K (2020) Phase equilibria of ammonium scandium fluoride phases in aqueous alcohol mixtures for metal recovery by anti-solvent crystallization. Sep Purif Technol 252:117449. https://doi.org/10.1016/j.seppur.2020.117449

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Edward Michael Peters or Kerstin Forsberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Peters, E.M., Svärd, M., Forsberg, K. (2022). Effect of Antisolvent Type and Concentration on Morphology and Crystal Size of (NH4)3ScF6 Obtained by Antisolvent Crystallization. In: Ouchi, T., et al. Rare Metal Technology 2022. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-92662-5_12

Download citation

Publish with us

Policies and ethics