Skip to main content
Log in

Continuous reactor system of monosized colloidal particles

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A reactor system, which continuously hydrolysed the metal alkoxide in an alcohol solution, was designed using an electromagnetic stirrer and an ageing tube. Several monosized colloidal particles were produced by this reactor system, which had high reproducibility and reliability for long-term production. The relation between powder characteristics and experimental parameters such as reagent concentration, mixing rate, ageing time, temperature, was investigated. These parameters had an effect on the particle size, size distribution, morphology and state of agglomeration. It is possible to control the particle size to between 0.1 and 1.0 μm by varying the experimental conditions. A narrower size distribution of powders was obtained by using an electromagnetic stirrer with greater flow rate. Physical and chemical properties of monosized colloidal particles obtained by this reactor were comparable to those of monosized colloidal particles obtained by the batch process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. Mazdiyasni,Cemm. Int. 8 (1982) 42.

    Google Scholar 

  2. W. W. Rhodes,J. Amer. Ceram. Soc. 64 (1981) 19.

    Google Scholar 

  3. M. F. Yan,Chem. Engng Sci. 48 (1981) 53.

    Google Scholar 

  4. K. Kamiya, S. Sakka andM. Mizutani,J. Ceram. Soc. Jpn 86 (1978).

  5. M. D. Sacks andT. Y. Tesng,J. Amer. Ceram. Soc. 67 (1984) 532.

    Google Scholar 

  6. E. M. Rabionvich,J. Mater. Sci. 20 (1985) 4259.

    Google Scholar 

  7. K. Kamiya, K. Tanimoto andT. Yoko,J. Mater. Sci. 5 (1986) 421.

    Google Scholar 

  8. N. Tohge, A. Matsuda andT. Minami,J. Ceram. Soc. Jpn 95 (1987) 182.

    Google Scholar 

  9. A. Matsuda, Y. Matsuno, S. Katayama andT. Tsuno,J. Mater. Sci. Lett. 8 (1989) 902.

    Google Scholar 

  10. B. E. Yoldas,J. Mater. Sci. 21 (1986) 1080.

    Google Scholar 

  11. Idem., ibid. 21 (1986) 1087.

    Google Scholar 

  12. Idem., ibid. 12 (1977) 1203.

    Google Scholar 

  13. Idem., ibid. 14 (1979) 1843.

    Google Scholar 

  14. K. C. Song andI. J. Chung,J. Non-Cryst. Solids 108 (1989) 37.

    Google Scholar 

  15. A. C. Pierre andD. R. Uhlmann,J. Amer. Ceram. Soc. 70 (1987) 28.

    Google Scholar 

  16. J. Y. Chane Ching andL. C. Klein,ibid. 71 (1988) 83.

    Google Scholar 

  17. Idem., ibid. 71 (1988) 86.

    Google Scholar 

  18. B. E. Yoldas,J. Appl. Chem. Biotechnol. 23 (1973) 803.

    Google Scholar 

  19. Idem. Amer. Ceram. Soc. Bull. 54 (1975) 289.

    Google Scholar 

  20. W. Stöber, A. Fink andE. Bohn,J. Colloid Interface Sci. 26 (1968) 62.

    Google Scholar 

  21. T. Shimohira andH. Ishijima,J. Chem. Soc. Jpn 9 (1981) 1503.

    Google Scholar 

  22. T. Ikemoto, K. Uematsu, N. Mizutani andM. Kato,J. Ceram. Soc. Jpn 93 (1985) 261.

    Google Scholar 

  23. E. A. Barringer andH. K. Bowen,Langmuir 1 (1985) 414.

    Google Scholar 

  24. J. H. Jean andT. A. Ring,ibid. 2 (1986) 251.

    Google Scholar 

  25. B. Fegley, P. White andH. K. Bowen,Amer. Ceram. Soc. Bull. 64 (1985) 1115.

    Google Scholar 

  26. T. Ogihara, N. Mizutani andM. Kato,Ceram. Int. 13 (1987) 35.

    Google Scholar 

  27. K. Uchiyama, T. Ogihara, T. Ikemoto, N. Mizutani andM. Kato,J. Mater. Sci. 22 (1987) 4343.

    Google Scholar 

  28. R. H. Heistand andY. H. Chia,Mater. Res. Soc. Symp. Proc. 73 (1986) 92.

    Google Scholar 

  29. T. Ogihara, T. Ikemoto, N. Mizutani, M. Kato andY. Mitarai,J. Mater. Sci. 21 (1986) 2771.

    Google Scholar 

  30. T. Ogihara, H. Kaneko, N. Mizutani andM. Kato,J. Mater. Sci. Lett,7 (1988) 867.

    Google Scholar 

  31. T. A. Ring,Chem. Engng Sci. 39 (1984) 1731.

    Google Scholar 

  32. J. H. Jean, D. M. Goy andT. A. Ring,Amer. Ceram. Soc. Bull. 66 (1987) 1517.

    Google Scholar 

  33. A. van Zyl, P. M. Smith andA. I. Kingdon,Mater. Sci. Engng 78 (1986) 217.

    Google Scholar 

  34. T. Ogihara, M. Ikeda, M. Kato andN. Mizutani,J. Amer. Ceram. Soc. 72 (1989) 1598.

    Google Scholar 

  35. J. H. Jean andT. A. Ring,Amer. Ceram. Soc. Bull. 65 (1986) 1574.

    Google Scholar 

  36. Idem., Mater. Res. Soc. Symp. Proc. 73 (1986) 85.

    Google Scholar 

  37. T. E. Mates andT. A. Ring,Colloid Surf. 24 (1987) 299.

    Google Scholar 

  38. J. H. Jean andT. A. Ring,ibid. 29 (1988) 273.

    Google Scholar 

  39. N. Kalley andI. Fischer,ibid. 13 (1985) 145.

    Google Scholar 

  40. E. Matijević andW. P. Hsu,J. Colloid Interface Sci. 118 (1987) 506.

    Google Scholar 

  41. E. A. Barringer andH. K. Bowen,J. Amer. Ceram. Soc. 65 (1982) C-199.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogihara, T., Iizuka, M., Yanagawa, T. et al. Continuous reactor system of monosized colloidal particles. J Mater Sci 27, 55–62 (1992). https://doi.org/10.1007/BF00553836

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00553836

Keywords

Navigation