Journal of Materials Science

, Volume 27, Issue 1, pp 55–62 | Cite as

Continuous reactor system of monosized colloidal particles

  • Takashi Ogihara
  • Manabu Iizuka
  • Teruaki Yanagawa
  • Nobuo Ogata
  • Kokichi Yoshida
Papers

Abstract

A reactor system, which continuously hydrolysed the metal alkoxide in an alcohol solution, was designed using an electromagnetic stirrer and an ageing tube. Several monosized colloidal particles were produced by this reactor system, which had high reproducibility and reliability for long-term production. The relation between powder characteristics and experimental parameters such as reagent concentration, mixing rate, ageing time, temperature, was investigated. These parameters had an effect on the particle size, size distribution, morphology and state of agglomeration. It is possible to control the particle size to between 0.1 and 1.0 μm by varying the experimental conditions. A narrower size distribution of powders was obtained by using an electromagnetic stirrer with greater flow rate. Physical and chemical properties of monosized colloidal particles obtained by this reactor were comparable to those of monosized colloidal particles obtained by the batch process.

Keywords

Particle Size Agglomeration Reactor System Ageing Time Experimental Parameter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. S. Mazdiyasni,Cemm. Int. 8 (1982) 42.Google Scholar
  2. 2.
    W. W. Rhodes,J. Amer. Ceram. Soc. 64 (1981) 19.Google Scholar
  3. 3.
    M. F. Yan,Chem. Engng Sci. 48 (1981) 53.Google Scholar
  4. 4.
    K. Kamiya, S. Sakka andM. Mizutani,J. Ceram. Soc. Jpn 86 (1978).Google Scholar
  5. 5.
    M. D. Sacks andT. Y. Tesng,J. Amer. Ceram. Soc. 67 (1984) 532.Google Scholar
  6. 6.
    E. M. Rabionvich,J. Mater. Sci. 20 (1985) 4259.Google Scholar
  7. 7.
    K. Kamiya, K. Tanimoto andT. Yoko,J. Mater. Sci. 5 (1986) 421.Google Scholar
  8. 8.
    N. Tohge, A. Matsuda andT. Minami,J. Ceram. Soc. Jpn 95 (1987) 182.Google Scholar
  9. 9.
    A. Matsuda, Y. Matsuno, S. Katayama andT. Tsuno,J. Mater. Sci. Lett. 8 (1989) 902.Google Scholar
  10. 10.
    B. E. Yoldas,J. Mater. Sci. 21 (1986) 1080.Google Scholar
  11. 11.
    Idem., ibid. 21 (1986) 1087.Google Scholar
  12. 12.
    Idem., ibid. 12 (1977) 1203.Google Scholar
  13. 13.
    Idem., ibid. 14 (1979) 1843.Google Scholar
  14. 14.
    K. C. Song andI. J. Chung,J. Non-Cryst. Solids 108 (1989) 37.Google Scholar
  15. 15.
    A. C. Pierre andD. R. Uhlmann,J. Amer. Ceram. Soc. 70 (1987) 28.Google Scholar
  16. 16.
    J. Y. Chane Ching andL. C. Klein,ibid. 71 (1988) 83.Google Scholar
  17. 17.
    Idem., ibid. 71 (1988) 86.Google Scholar
  18. 18.
    B. E. Yoldas,J. Appl. Chem. Biotechnol. 23 (1973) 803.Google Scholar
  19. 19.
    Idem. Amer. Ceram. Soc. Bull. 54 (1975) 289.Google Scholar
  20. 20.
    W. Stöber, A. Fink andE. Bohn,J. Colloid Interface Sci. 26 (1968) 62.Google Scholar
  21. 21.
    T. Shimohira andH. Ishijima,J. Chem. Soc. Jpn 9 (1981) 1503.Google Scholar
  22. 22.
    T. Ikemoto, K. Uematsu, N. Mizutani andM. Kato,J. Ceram. Soc. Jpn 93 (1985) 261.Google Scholar
  23. 23.
    E. A. Barringer andH. K. Bowen,Langmuir 1 (1985) 414.Google Scholar
  24. 24.
    J. H. Jean andT. A. Ring,ibid. 2 (1986) 251.Google Scholar
  25. 25.
    B. Fegley, P. White andH. K. Bowen,Amer. Ceram. Soc. Bull. 64 (1985) 1115.Google Scholar
  26. 26.
    T. Ogihara, N. Mizutani andM. Kato,Ceram. Int. 13 (1987) 35.Google Scholar
  27. 27.
    K. Uchiyama, T. Ogihara, T. Ikemoto, N. Mizutani andM. Kato,J. Mater. Sci. 22 (1987) 4343.Google Scholar
  28. 28.
    R. H. Heistand andY. H. Chia,Mater. Res. Soc. Symp. Proc. 73 (1986) 92.Google Scholar
  29. 29.
    T. Ogihara, T. Ikemoto, N. Mizutani, M. Kato andY. Mitarai,J. Mater. Sci. 21 (1986) 2771.Google Scholar
  30. 30.
    T. Ogihara, H. Kaneko, N. Mizutani andM. Kato,J. Mater. Sci. Lett,7 (1988) 867.Google Scholar
  31. 31.
    T. A. Ring,Chem. Engng Sci. 39 (1984) 1731.Google Scholar
  32. 32.
    J. H. Jean, D. M. Goy andT. A. Ring,Amer. Ceram. Soc. Bull. 66 (1987) 1517.Google Scholar
  33. 33.
    A. van Zyl, P. M. Smith andA. I. Kingdon,Mater. Sci. Engng 78 (1986) 217.Google Scholar
  34. 34.
    T. Ogihara, M. Ikeda, M. Kato andN. Mizutani,J. Amer. Ceram. Soc. 72 (1989) 1598.Google Scholar
  35. 35.
    J. H. Jean andT. A. Ring,Amer. Ceram. Soc. Bull. 65 (1986) 1574.Google Scholar
  36. 36.
    Idem., Mater. Res. Soc. Symp. Proc. 73 (1986) 85.Google Scholar
  37. 37.
    T. E. Mates andT. A. Ring,Colloid Surf. 24 (1987) 299.Google Scholar
  38. 38.
    J. H. Jean andT. A. Ring,ibid. 29 (1988) 273.Google Scholar
  39. 39.
    N. Kalley andI. Fischer,ibid. 13 (1985) 145.Google Scholar
  40. 40.
    E. Matijević andW. P. Hsu,J. Colloid Interface Sci. 118 (1987) 506.Google Scholar
  41. 41.
    E. A. Barringer andH. K. Bowen,J. Amer. Ceram. Soc. 65 (1982) C-199.Google Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • Takashi Ogihara
    • 1
  • Manabu Iizuka
    • 1
  • Teruaki Yanagawa
    • 1
  • Nobuo Ogata
    • 1
  • Kokichi Yoshida
    • 1
  1. 1.Department of Materials Science and EngineeringFukui UniversityFukui-kenJapan

Personalised recommendations